Low-Cost VHF Antenna Final Presentation

ELECTRICAL [+] COMPUTER

ENGINEERING

Agenda

- Overview
- Design Process
- Design
 - Antenna
 - RF Circuit
- Simulation
- Radar Analysis
- Prototyping
- Cost Breakdown
- Challenges
- Future Work

Overview

- Radar fence posts forming a line detecting objects crossing the threshold
- Stealth Aircraft are optimized for X and K_u frequency bands
- VHF band radar will allow for better detection of small targets due to resonance

Problem Statement

 Design, prototype, and analyze a cost-effective, durable antenna to be used as part of a radar system operating in the VHF band to accurately detect small objects.

Objectives

- Detect small objects
 - Radar Cross Section (RCS) < $1m^2$
- Operate within VHF Band
 - f: 30MHz 300MHz
- Low Transmit Power
 - $P_t < 1W$
- Low Cost
 - Less than \$10,000
- Maximize Range

Design Process

5/26/2022

Key Equations:

• Range Equation:
$$R = \sqrt[4]{\frac{P_t \cdot G^2 \cdot \lambda^2 \cdot \sigma}{(4\pi)^3 \cdot S_{min}}}$$

- Noise Equation: N = kTB
- Signal to Noise Ratio: $SNR = \frac{S_{min}}{N}$

Design – Antenna

• 3/4 Monopole with a Ground Plane

3/4 Monopole with Ground Plane		
Frequency	224 MHz	
Transmit Power	1W	
Bandwidth	500 kHz	
Material	Aluminum-6061	
Height	0.96m	
Width	1.22m	

Design – RF Circuit

 Circuit for amplification, modulating, and processing of received signal

Simulations

- High-Frequency Structure Simulator (HFSS) Antenna
- Advanced Design System (ADS) RF Circuit

Radar Analysis

Triangular Waveform

Prototyping

- 3D printed brace to hold the radiating rod straight
 - Keeps the radiating rod in contact with the SO-239
- Polycarbonate support base for the aluminum ground plane

Prototyping – Cont'd

Prototyping – Cont'd

Cost Breakdown

Total Cost Per Unit: \$839

- Antenna: \$276
- RF Circuit: \$563

System Total Cost

Part	Price
Aluminum-6061 Rod	\$ 39.10
Aluminum-6061 Base Plate	\$ 80.96
Polycarbonate Base Plate	\$145.88
SO-239	\$ 2.98
PLA Brace	\$ 3.23
Machine Screws and Nuts	\$ 3.94
Antenna Subtotal	\$276.09
LNA	\$ 8.76
Mixer	\$ 72.70
Power Splitter	\$ 6.23
Circulator	\$455.00
Bandpass Filter	\$ 20.17
Circuit Subtotal	\$562.86
Grand Total	\$838.95

Antenna Circuit

Georgia School of Electrical and Tech Computer Engineering 0

Challenges

Connection between SO-239 and Monopole Rod

• Effects of Brace on Return Loss (S_{11})

Inability to Thoroughly Test Antenna Parameters

Future Work

- Anechoic Chamber Testing
 - Measurements of Gain and Radiation Pattern
- Construct and Test RF Circuit
- Testing Durability

Questions?

