

iValet: An Intelligent Parking Lot Management System and Interface

Final Report

ECE4872-L4 Senior Design Project

Team Name: iValet

Team Number: sd22p37

Project Faculty Advisor: Dr. Patricio Vela

Faiza Yousuf, Computer Engineering, fyousuf6, fyousuf6@gatech.edu

Wei Xiong Toh, Electrical Engineering, wtoh7, wtoh7@gatech.edu

Kelin Yu, Electrical Engineering, kyu85, coliny@gatech.edu

Yunchu Feng, Computer Engineering, yfeng336, yfeng336@gatech.edu

Submitted

2022 May 3

mailto:fyousuf6@gatech.edu
mailto:wtoh7@gatech.edu
mailto:coliny@gatech.edu
mailto:yfeng336@gatech.edu

iValet ii

Table of Contents
iValet: An Intelligent Parking Lot Management System and Interface Final Report................................ i

Executive Summary ... iv

Nomenclature .. v

1. Introduction ... 1

1.1 Objective ... 1

1.2 Motivation ... 2

1.3 Background ... 2

2. Project Description, Customer Requirements, and Goals ... 3

2.1 Project Description ... 3

2.2 Customer & Engineering Requirements ... 4

2.3 Goals ... 6

3. Technical Specifications & Verification .. 7

3.1 Google Coral Development Board with 1 GB RAM [3] .. 7

3.2 Google Coral Camera [4] .. 8

4. Design Approach and Details ... 8

4.1 Design Concept Ideation, Constraints, Alternatives, and Tradeoffs... 8

4.1.1 Development Board with GPU and Camera .. 8

4.1.2 Software ... 10

4.1.3 SQL Backend ... 11

4.1.4 Graphic User Interface ... 12

4.2 Engineering Analyses and Experiment ... 16

iValet iii

4.3 Codes and Standards ... 16

4.3.1 Standards .. 16

4.3.2 Codes ... 17

5. Project Demonstration .. 17

5.1 Hardware system ... 17

5.2 Detection system ... 18

5.3. Navigation algorithm .. 21

5.4. User interface .. 22

5.5. Overall Demonstration .. 23

6. Schedule, Tasks, and Milestones: ... 23

7. Marketing and Cost Analysis.. 25

7.1 Marketing Analysis .. 25

7.2 Cost Analysis (Budget) .. 26

8. Conclusion & Current Status .. 31

9. Leadership Roles .. 32

10. References ... 33

Appendices .. 34

iValet iv

Executive Summary

The iValet intelligent parking lot management system automatically directs drivers to the nearest

vacant parking spot upon entering a crowded parking lot. The system consists of a camera, machine

learning development board, a PostgreSQL server, and a user interface (web application). The camera

is used to take photos of the entire parking lot, the development board runs segmentation and

classification algorithms on those photos, the SQL server contains data about each parking spot that is

written to by the image processing models, a path-planning algorithm, and the UI, while the web

application shows end users the directions to the empty parking spots based on the location of the

parking lot entrance.

When drivers enter the parking lot, they will need to scan a QR code that leads them to the landing

page for the iValet web application (formerly https://www.ivalet-crc.com/, the domain will be removed

after the EXPO). Once they login through Google and input their license plate and handicap needs, the

system identifies the nearest vacant parking spot for their vehicle from the results of the image

segmentation and classification models. The system currently uses hardcoded maps (KML maps) to

direct drivers from the entrance to their assigned parking spot.

The ease at which drivers are able to find parking spaces for their vehicles can significantly affect their

mood and overall experience of the subsequent activity they are taking part in. The use of iValet will

help minimize some of the frustration, anger and oftentimes avoidable waiting that arises from being

unable to locate a vacant spot in a crowded parking lot. The iValet system as is costs an estimated

$198.15.

https://www.ivalet-crc.com/

iValet v

Nomenclature

Coral – Google Coral Development Board

iValet – entire project/system

SQL server – PostgreSQL server

UI - user interface; the web application users interact with

iValet 1

1. Introduction

The iValet Parking Lot Management System is a novel and affordable parking management system that

automatically directs drivers to the next available parking spot for their type of vehicle. The system

consists of a camera, development board, a SQL server, and a web application. The team's budget limit

was $1000, and the cost of the current design was $198.15.

1.1 Objective

The objective of iValet is to provide drivers with a seamless experience when searching for empty parking

spaces in a crowded parking lot (ex: stadiums, amusement parks, etc.). A camera mounted in a position

that captures the aerial view of the parking lot provides the system with images of the lot that are updated

every thirty seconds. Individual frames from the image feed are processed by the lot detection algorithm

on a Google Coral and identifies which lots are currently occupied or empty. A path finding algorithm will

subsequently sort, along with the location information provided by the users’ mobile phone, to calculate

the shortest path from the users’ current location to the aforementioned parking spot. This information will

then be displayed on the web application for the drivers. Figure 1 shows the block diagram of the iValet

system.

Figure 1. System overview block diagram of iValet

iValet 2

1.2 Motivation

According to parking data from 100,000 locations across more than 8,000 cities, INRIX, a transportation

analytics firm, found that on average, drivers in the US, UK and Germany spend 17, 41 and 44 hours per

year respectively searching for parking [1]. This amounts to an estimated $345 per driver in terms of

wasted time, fuel and emissions in the US [1]. Products that are available in the market such as PlacePod

[2], an Internet-of-Things (IoT) enabled magnetic sensor that detects the presence of cars in each available

parking spot, primarily require relatively higher set up costs because of the large number of sensors that

needs to be purchased for a large parking lot vis-à-vis the more cost-efficient prototype that the team aims

to develop. The time and manpower needed to set up the prototype will also be significantly lower than

that of traditional IoT devices since it (currently) uses a single camera to detect parked cars within a wide

area (66 parking spots). iValet provides owners of large parking spaces, such as supermarkets or sporting

venues, a cheap solution to reducing the time drivers have to spend circling their parking lots, which

ultimately leads to better customer experience, prolonged engagement at the venue, reduced fuel costs for

drivers and lower carbon emissions.

1.3 Background

While commercial hardware-based IoT solutions can be used to tackle the parking problem stated above,

there are no software-based alternatives that provide an end-to-end service that identifies empty parking

spaces based on the type of vehicle and provides drivers with the directions to those empty lots in real

time. iValet relies on two key algorithms to work successfully.

For the iValet system to accurately identify the parking spaces in a particular parking lot, the image

segmentation model needs to be trained on images of the parking spaces from that specific parking lot.

Image segmentation algorithms work by classifying each pixel of a given image with a pixel-wise mask.

Different labels in the mask correspond to a different region of interest. In the case of a parking lot, pixels

iValet 3

can be classified into (1) empty lot, (2) occupied lot, (3) path for cars. Image segmentation models learn to

classify each pixel by training on labeled images that are representative of the images used in deployment

and iteratively refine their classification criteria. This training process usually takes a significant amount

of time before the algorithms can perform well. However, to speed up the training process such that the

iValet system is agnostic to the orientations of the parking spaces, layouts and weather conditions, transfer

learning can be used. Transfer learning involves using a pre-trained model that performs relatively well on

a particular dataset and training it on a new dataset. This method significantly reduces training time

because the model only needs to learn the difference in orientation and not learn to distinguish empty lots

from occupied lots again.

The next key component to the iValet system is the pathfinding algorithm. With the coordinates of

the vacant lot and the driver’s location, the system calculates the shortest path between the two

coordinates subject to certain constraints using the pathfinding algorithm. An example of a constraint that

might be imposed in a parking lot is the direction of traffic. Pathfinding algorithms generally work by

discretizing the given space into a grid and performs a grid-based search over the entire space based on a

certain heuristic measure to search for the shortest path between the two points. After calculating the

shortest path, iValet will then relay this information to the driver via the web application.

2. Project Description, Customer Requirements, and Goals

2.1 Project Description

The iValet managing system will consist of 4 main components: the hardware system, camera detecting

system, SQL database, and user interface. The hardware system contains a Google coral dev board, a coral

camera, a printed coral case, and a tripod. We will use the coral camera to take photos and use the coral

dev board to process those photos with our trained detection model. We also have a printed coral case and

a tripod to fix a specific angle for our camera. For the camera detecting system, it contains a segmentation

iValet 4

algorithm and a trained classifier. We will use the segmentation algorithm to segment all those parking

slots out and test if they are occupied or not with the classifier. It will be connected to the database, which

shows some identities of each parking slot. In the database, it shows some identities of each parking slot

such as slot id, occupied or not, distance to the entrance, etc. The database will connect to our user

interface to help it find the best path. For the user interface, with data that comes from the database and

our navigation algorithms, it can find the closest parking slot, find the car, and find the way out.

2.2 Customer & Engineering Requirements

The requirements can be separated into several parts: cameras, time limits, accuracy, and cost. Also,

working together with some general requirements, QFD table Figure 2 denotes our requirements.

Cameras:

Heights: Because of the heights of the building, it needs to be no more than 15 meters.

Maximum area: The largest parking lot to detect should not be greater than 10000 m^2.

Frame Rate: 24 frames/s is enough for us to work with real-time detection.

Time limits:

We need to let the camera take a photo every 30 seconds, and the database will be updated each time. Also,

we need to change the slot to be occupied once a user chooses it.

Accuracy:

The accuracy of the detection algorithm needs to be greater than 90%. The accuracy of the priority of parking

slots needs to be 100% because we can get distance data from Google map.

iValet 5

Cost:

We do not want the total cost of this project to be more than 1000 dollars (team budget). Currently the

system costs no more than 200 dollars.

Prices:

Purchase prices for vendors and involvement of stakeholders would be dependent on the theoretical success

of the product. Installation of a single unit of iValet (at its current design) is less than $200.

QFD Table of our requirements:

Figure 2. QFD Table, see full image in Appendix A.

iValet 6

2.3 Goals

Users:

Vendors such as retailers, restaurants, sport stadiums, etc., with large parking lots would benefit from an

efficient parking system.

Functionality:

• Our project can detect empty slots, find the best path to it, and show that information on the UI.

• The camera will take a photo every 30 seconds.

• Our segmentation algorithm and trained classifier will process those photos.

• The accuracy of our detection system should achieve 90%.

• Some identities like slots ids, distance to entrance, occupied or not, etc. will be shown in the

database. That information will be updated every 30 seconds.

• Once the user wants to park his/her car, our UI will show the closest parking slot and the path to

this location.

• Once the user parks in the right place, the UI will show the location of the car.

• Once the user wants to leave the parking lot, the UI will show the way out.

iValet 7

3. Technical Specifications & Verification

Main hardware components include the Google Coral Dev Board [3] and its companion Google Camera [4].

3.1 Google Coral Development Board with 1 GB RAM [3]

Table 1. Specifications of Google Coral Board

Feature/ Description Value from Source/Data Sheet

Dimensions 88 mm x 60 mm x 24 mm

OS Mendel (Debian derivative)

CPU NXP i.MX 8M SoC (quad

Cortex-A53, Cortex-M4F)

GPU Integrated GC7000 Lite Graphics

Machine Learning accelerator Google Edge TPU coprocessor:

4 TOPS (int8); 2 TOPS per watt

RAM 1 GB LPDDR4

Wireless Wi-Fi 2x2 MIMO

(802.11b/g/n/ac 2.4/5GHz) and

Bluetooth 4.2

Flash Memory 8 GB eMMC, MicroSD slot

USB Type-C OTG; Type-C power;

Type-A 3.0 host; Micro-B serial

console

LAN Gigabit Ethernet port

Audio 3.5mm audio jack (CTIA

compliant); Digital PDM

microphone (x2); 2.54mm 4-pin

terminal for stereo speakers

Video HDMI 2.0a (full size); 39-pin

FFC connector for MIPI-DSI

display (4-lane); 24-pin FFC

connector for MIPI-CSI2 camera

(4-lane)

Power 5V DC (USB Type-C)

Cost $132.99

iValet 8

3.2 Google Coral Camera [4]

Table 2. Specifications of Google Coral Camera

Feature/ Description Value from Source/Data Sheet

Sensor Omnivision OV5645 SoC (built

in ISP)

Focus Auto focus, focal length 2.5mm,

range 10cm-infinity

Field of View 84.0 degrees / 87.6 degrees

ISP Functions Auto exposure control, auto

white balance, auto band filter,

auto 50/60Hz lumination, auto

black level calibration

Connections MIPI-CSI, dual lane MIPI

interface

Dimensions 25 mm x 25 mm x 6.98 mm

Cable Size 150 mm x 12.5 mm

Cost $21.99

4. Design Approach and Details

The detailed implementation of our project is presented in this section, including initial design

considerations, methods and alternatives.

4.1 Design Concept Ideation, Constraints, Alternatives, and Tradeoffs

4.1.1 Development Board with GPU and Camera

The main hardware component of iValet is an embedded computer that is capable of both extracting images

from a compatible peripheral camera device and running our segmentation and classification machine

learning models with an on-board GPU. It (the computer) also must update the database with the relevant

iValet 9

status for each parking spot. Several factors were considered when choosing this key piece of hardware:

size, camera frame rate, ease of use and compute power. Since we intended for the overall system to be easy

to install, the computer should not be too large nor heavy. For our purposes of updating the database

occasionally, the camera frame rate can be low, and a moderately high resolution is sufficient, which

significantly lowers costs.

The NVIDIA Jetson Nano fits all the aforementioned constraints perfectly. It is inexpensive, has adequate

CPU and GPU compute, several compatible camera modules, and a large open-source community to

facilitate troubleshooting. However, due to the surge in demand for the Jetson family of devices at the start

of the semester (and production issues due to COVID making them more expensive), we had to settle for

the Google Coral Development Board, a close alternative to the Nano.

Ensuring that the camera remains in a stable, fixed position is pivotal to the operation of the system. This

allows the Google Coral to update occupancy status for all parking lots within the original field of view of

the camera. Unfortunately, the team was not permitted to have permanent mounts inside or affixed to any

campus buildings. Hence, plastic casings to secure the camera and the Coral board were 3D-printed, as

shown in Figure 3. The camera mount was specifically designed to allow users to change its mounting angle

by loosening the screws at the base of the mount. The external casing of the camera and the coral board was

then secured to a tripod to stabilize the video feed, shown in Figure 4.

iValet 10

Figure 3. Google Coral encased with Camera

mounted atop

Figure 4. Hardware stabilized with tripod

4.1.2 Software

A segmentation model (Mask R-CNN) and a convolutional neural network were trained separately. The

former identifies bounding boxes of all parking spots within a given image, whereas the latter classifies if a

particular parking spot is empty or occupied. Mask R-CNN is a general framework for object instance

segmentation. It can detect, recognize, and follow objects, as well as segment with a mask in a pixel-level

accuracy. In this project, we only needed to use the bounding box to segment each parking slot out, so we

wrote a method to output the following bounding box instead of masks. For the classifier, we built three

convolution layers with Max pooling and a dense layer. This classifier will output binary data: 0-Empty and

1-occupied. Our initial pipeline was as follows: obtain the parking spots from the segmentation model and

feed each cropped parking spot into the classifier before updating the database. However, this approach was

not successful since the performance of the Mask-RCNN was not as expected. The reason might be the

different camera angles and lack of images from the dataset that was used during training. We can train a

larger dataset to fix this problem.

iValet 11

Figure 5. Mask R-CNN Network diagram

Figure 6. Convolutional Neural Network Diagram

An alternate solution was implemented in which the bounding boxes for each parking spot was predefined

and subsequently parsed as input to the classifier. Output from the classifier then allowed Coral to update

the database with a Python script. This algorithm finally reaches 95% accuracy in the parking lot of the

CRC. The problem with this model is that it cannot work in an unknown parking lot immediately because

it relies on predefined images.

4.1.3 SQL Backend

Information on each visible parking spot is stored in a SQL server. The data consists of the following entries:

Table 3. SQL Server data fields

Name of Field Data Type

iValet 12

Lot id (primary key) Integer

Empty Integer

Distance (to entrance) Integer

License plate String

Handicap Integer

Time parked DateTime

The “empty” and “handicap” fields are used to identify if the spot is currently empty or is for handicapped

drivers. Distance to each parking spot from the entrance is calculated and saved in the database. The “license

plate” and “time parked” fields are updated once a user is assigned a parking spot. Tracking the status of

“time parked” further enables the system to calculate the total parking fee (Figure 12) for users upon leaving

the parking lot, and an online payment feature was added to provide users with a seamless exit.

Storing our data in an SQL database has many advantages. Of which, the main one is that relevant parking

lot information can be easily obtained with relatively simple SQL queries, allowing the backend API calls

to quickly identify the lot id of the nearest parking spot or the spot that users had parked in order to park

and find their cars respectively.

4.1.4 Graphic User Interface

A web application was chosen as the platform to host the GUI since the speed of sending information to a

new user was prioritized given that he or she did not have to spend time to download an app. The link to the

web application could also be shared with users through the form of a QR code to be pasted at the gate

entry.

A simple layout with large buttons to park and locate one’s vehicle contributes to the UI’s ease of use,

depicted in Figure 7. Once users input their license plate information (Figure 8), the GUI captures the

iValet 13

information, sends the relevant API calls to get and update information on the database with the license

plate of the vehicle that just entered.

Figure 7. Landing page of web application

Figure 8. Form to capture user input

The three most relevant pages of the site are the different navigation pages to help the user park their car,

find their car, and exit the lot, as see in Figure 9, 10, and 11. All three maps are constructed using the

Google Maps JavaScript API and a hardcode KML (Keyhole Markup Language file; similar to an XML

that contains coordinates and styling details) that displays the red path and marker on the map.

iValet 14

Figure 9. UI Map to park

Figure 10. UI map to find where the car was parked

iValet 15

Figure 11. UI map displaying the path from the parking spot to the exit

Prior to viewing the “exit lot map” in Figure 11, users are directed to a payment screen (depicted in

Figure 12 and Figure 13).

Figure 12. Calculated parking fee

Figure 13. Payment screen

iValet 16

4.2 Engineering Analyses and Experiment

The various components of the system were separated into smaller groups and subgroups that were

individually tested before integrating them for our demonstration. For instance, the hardware setup

comprised the setting up of the Coral with the camera, training the neural networks and running them on

the hardware itself. Software components included the backend API server and the GUI. Functionalities

were separately coded before integrating the API calls with the interaction of the user through the GUI.

Separating the components of the system into smaller subgroups facilitated identifying bugs in each

subgroup, which were easier to solve on their own.

4.3 Codes and Standards

4.3.1 Standards

• Wireless communication between the processor, cameras, and end user devices – Use of HTTP and

TCP will be critical for safely transferring data between different devices [5].

• Web applications (for potential UI) for end users – Website applications are typically designed using

HTML, CSS, and JavaScript [6].

• ISO/IEC /IEEE 26351-2015 – Systems and software engineering – Content management for product

lifecycle, user and service management documentation - 26351-2015 is an international standard

which describes the requirements of any content or data used within a product’s software, life cycle,

service management system documentation, etc. It specifies the practices regarding content creation,

publication and archiving, which will be useful for managing the various publications of the project

[7].

• ISO/IEC/IEEE 24748-2-2018 Systems and software engineering — Life cycle management — Part

2: Guidelines for the application of ISO/ IEC/IEEE 15288 (System life cycle processes) The 24748-

iValet 17

2-2018 standard discusses the processes needed for using a system-based approach to manage

projects. It also highlights the purpose and benefits of applying system-based engineering to solve

problems. The approaches described in this standard can be implemented in the group’s final project

to develop a more holistic solution for end users [8].

4.3.2 Codes

1. Video Recording Laws – Ga. Code 16-11-62(2) - According to Ga. Code 16-11-62(2), it is a crime

to implement hidden cameras, or any similar device, to observe someone in a private setting [9].

Therefore, the camera should be as clear a view as possible, and users (both individuals and those

who might install the system) should agree to terms to use the iValet service.

5. Project Demonstration

To qualitatively describe the demonstration and validation of our project specifications, our project is broken

into the Hardware System, Detection Algorithms, Navigation Algorithms, and UI interface. Those

functional modules were tested with our database and some following cases.

5.1 Hardware System

To check our coral dev board and camera, there are some demo and sample models on its website. Testing

with those trained models, we can supervise the output from the board with its self-contained stream server.

To embed our trained model and following codes into it, we need to set up all those packages and check the

version of each of them. For instance, proper version control can eliminate bugs and deprecated functions

when running the code with libraries such as OpenCV and TensorFlow. The right SQL drivers were also

needed on the Coral to establish a connection to the SQL database. Then, we tested to see if our code ran

on the Coral successfully. Initially, our SQL database was on MSSQL with its own proprietary drivers,

iValet 18

which did not support the Mendel Linux operating system used by the Coral board. Since the Coral was not

able to connect to a MSSQL database, we decided to migrate our database to PostgreSQL instead.

With the camera and Coral board mounted on the tripod, adjustments to the camera angle were made to

ensure that the angle was consistent with the previous one used to define bounding boxes for each spot by

checking the video feed from the streamer. Our segmentation model can only work with the same camera

angle.

Figure 14. Camera setup

5.2 Detection System

First, we built a Mask R-CNN based model for detecting parking spaces dynamically. However, when we

tested this model with the parking lots of the CRC, it did not work well. The reason might be insufficient

training dataset and that our camera has a different camera angle than that used to capture the training

images.

iValet 19

Figure 15. Result of Mask-RCNN detection

Then, we built another script to pre-define the image from the parking lot of the CRC. Once we tested this

with the same photo, it successfully segmented them into 66 segmented images.

Figure 16. Cropped images of predefined bounding boxes

The segmented images were then used to test our classifier. All of them worked well.

iValet 20

Figure 17. Result of classifier on selected images

Finally, we created a script to test the overall detection system with our hardware system in the CRC parking

lot. We showed all those segmented parking slots with their corresponding bounding boxes, and set the

empty slots to be green, and the occupied slots to be blue.

Also, we tested the connection between our model and the SQL database, which successfully updated every

30 seconds.

Figure 18. Empty lot detection with blue as occupied and green as vacant

iValet 21

After several rounds of testing, we found that our detection system works with 100% accuracy if all the

parking spots are clearly visible. If there are some shadow areas, it might have some errors. The overall

accuracy is around 95%, which is higher than our requirement.

5.3. Navigation Algorithm

The A* algorithm was used to select the shortest path from the entrance to each individual parking lot.

To test this algorithm, we first wrote code to rectify for our photos to simulate the top-down view from

Google Maps. Then, the A* algorithm identified the desired path to the certain spot with a red line.

0

Figure 19. A* Pathfinding algorithm with starting and ending points in blue circle and path in red

iValet 22

Finally, we used the pathfinding algorithm to sort the "Lot IDs” in the database in order of closest

unoccupied to farthest unoccupied, then closest occupied to farthest occupied. From here the web

application can query the closest parking spot from the top of the list to display the map shown in Figure

20 (also Figure 9).

Figure 20. Path shown on Google Maps (to park)

5.4. User Interface

Initial tests of the user interface began with designing the pages of our web application with React on the a

localhost (and later pushed to Netlify to host the site), starting with the landing page. As more pages were

added, we ensured that navigation between the pages were smooth.

After populating the SQL database with the relevant parking lot information, a backend API was written to

integrate data exchange between the user and the database through API calls. This allowed for retrieval of

the nearest parking lot, nearest handicap parking lot and updating occupancy status once users confirm that

they have parked in the assigned parking spot. These API calls were individually tested prior to integration

with the user interface to facilitate troubleshooting.

iValet 23

5.5. Overall Demonstration

The following demo (also linked in Appendix A) summarizes the experience on the UI and the execution of

the classification and segmentation algorithms.

https://drive.google.com/file/d/1vpijONvjzTPr2089D6ewCtY7oModstjp/view?usp=sharing

6. Schedule, Tasks, and Milestones:

The following PERT, Figure 21, depicts the team’s original task, estimate duration, and longest duration

from before design began.

Figure 21. Original PERT chart

The first GANTT table, Figure 22, was the team’s projected schedule before the start of the second

semester.

iValet 24

Figure 22. Original Second Semester GANTT

The GANTT chart, Figure 23, organizes the team's tasks according to the subsystem, the task leader, and

the time it was completed.

iValet 25

Figure 23. Final Gantt Chart (see in Appendix A)

7. Marketing and Cost Analysis

7.1 Marketing Analysis

The target market consists of venue owners with garages and parking lots in busy areas wanting to enhance

the parking experience of their customers. This parking guidance system is not a new concept, with more

than a few companies just in the Metro Atlanta area. Hub Parking, for example, will install hardware in

every single parking lot and intersection to guide the driver. With sensors and LCD screens everywhere in

the garage, the setup will cost around $10,000, and 20,000 for larger parking lots [10]. With iValet, only a

single camera was used, which will save the hypothetical cost around $1000 - $3000. The camera cost can

iValet 26

be scaled according to how many are used in a given parking lot. An example of the current iValet budget

is listed in Table 4.

Table 4. Components Cost for Prototype

Current Parts List with Cost and Citations

Part Part Type Cost Citation

Google Coral Dev

Board

Dev Board $132.99 [3]

Google Coral Camera Camera $21.99 [4]

SD Card Memory/Storage $6.19 NA

Tripod Mount for Board and

Camera

$24.99 NA

Printed Coral Case Case for Board and

Camera

NA – Printed at HIVE

Makerspace

NA

Webhosting on Netlify UI $11.99/month (only

had personalized

domain for month of

April)

[11]

Total Cost $198.15

7.2 Cost Analysis (Budget)

Four engineers completed the current iteration and development of iValet. The total labor hours for the

iValet and Labor cost are calculated in Table 5. Data for hourly payment is the average entry cost found

online [12]. The table has been separated into the meeting, data, model training, software, and hardware

portion with the total cost coming to around $8,565 for the labor cost.

iValet 27

Table 5. Estimated Hours per Teammate

estimates are from https://www.salary.com/

Yunchu: Meetings Data

Model

Training Testing

Path

Finding Total Hour

Hour: 15 6 30 10 2 63

Salary/Hour: $30 $35 $45 $30 $35

Total Cost: $450 $210 $1350 $300 $70 $2380

Faiza Meetings Data UI Testing

Path

Finding

Hour: 15 3 30 10 2 60

Salary/Hour: $30 $35 $32 $30 $35

Total Cost: $450 $105 $960 $300 $70 $1885

Wei Xiong Meetings Data

Model

Training Testing

Path

Finding

Hour: 15 30 2 10 15 72

Salary/Hour: $30 $35 $45 $30 $35

Total Cost: $450 $1050 $90 $300 $525 $2415

Colin Meetings Data Hardware Testing

Path

Finding

Hour: 15 1 30 10 4 60

Salary/Hour: $30 $35 $32 $30 $35

Total Cost: $450 $35 $960 $300 $140 $1,885

Complete Total $8,565

https://www.salary.com/

iValet 28

The statistics over five years of production and service of iValet are given in with the following assumptions.

First, with each year the business will expand, meaning the number of sales will increase. For example, the

first increase will be five more sales in the third year then ten more in the fourth. Revenue will also be

increased from $11,724 to $16,414 accordingly. Second, after each year, it is assumed iValet will run into

certain design issues and maintenance issues with each redesign, costing around $15,000 due to engineering

and part usage. Third, all parts are kept at a stable current market price with no volatility. These sales

numbers are gathered online from some similar businesses like parking Guidance System, LLC, and Hub

Parking. Twenty units in the first year is below average for most auto-guidance system services. Also, most

guidance systems services are subscription-based, meaning their customers will remain high each year.

Table 6. Recurring Costs

 Number/

Cost

/Salary

 per yr.

Year 1 Year 2 Year 3 Year 4 Year

5

Sales

Volume

(units)

20 20 25 35 45

Unit Price $468.99 $468

.99

 $468

.99

 $46

8

.99

 $46

8

.99

Sale

Revenue

 $9,379

.80

 $9,37

9

.80

 $11,724

.75

 $16,414

.65

 $21,1

04

.55

Non-re Cost $20 $400 $20 $400 $20 $500 $20 $700 $20 $900

1. Research and Dev (based on industry estimate)

Redesign $15,00

0

 $15,0

00

 $15,000 $15,000 $0

iValet 29

Engr

Change

Order

 $10,00

0

 $10,0

00

 $10,000 $10,000 $0

2.Production

Total Parts $186.16 $3723.

20

 $3723

.20

 $4654 $6515.6

0

 $837

7.20

Google

Coral Dev

Board

$132.99 $2,659

.80

 $2,65

9.80

 $3,324.7

5

 $4654.6

5

 $598

4.55

Google

Coral

Camera

$21.99 $438.8

0

 $438.

80

 $549.75 $769.65 $989.

55

SD Card

$6.19 $123.8

0

 $123.

80

 $154.75 $216.65 $278.

55

Tripod

$24.99 $499.8

0

 $499.

80

 $624.75 $874.65 $112

4.55

Profits are shown in Table 7. Profits are calculated based on the number of sales each year, minus the cost

of that year. The cost consists of marketing, packaging, support and maintenance, and distribution. Even

though the total profit is very similar, we are increasing the sales each year. This is because more parts and

labor are included. iValet is looking to break even in 5 years, and if subscription-based maintenance is

deployed, the profit will be even higher.

iValet 30

Table 7. Estimated profits

 Number

/Cost/Salar

y per yr.

Year 1 Year 2 Year 3 Year 4 Year 5

3. Packaging $10,000 $200,000 $200,000 $250,000 $350,000 $450,000

4. Marketing $15,000 $300,000 $300,000 $375,000 $525,000 $675,000

5. Sales $20,000 $400,000 $400,000 $500,000 $700,000 $900,000

6.

Distribution

$20,000 $400,000 $400,000 $500,000 700,000 $900,000

7. Support $15,000 $300,000 $300,000 $375,000 $525,000 $675,000

Total

Cost/Year

 $43,760 $43,760 $48,450 $57,829 $42,209

Overhead

Total

150 $65,639 $65,639 $2,465,639 $86,744 $63,314

Adjusted

Cost

 $109,399 $109,399 $2,514,089 $144,573 $105,523

Cost/Unit $468.99 $468.99 $468.99 $468.99 $468.99

Total

Profit/Yr.

 $21,880 $21,880 $2,417,190 $28,915 $21,105

iValet 31

8. Conclusion & Current Status

What was Delivered:

The system is able to determine the occupied status of sixty-six parking spots at the CRC with 95% to 100%

accuracy, as well as provide static maps to user to park in each spot, relocate their parked car at this spot,

then exit the parking lot from their lot.

Potential Improvements:

• The current design needs pre-defined images of parking spaces, so it cannot be used in unknown

areas immediately.

• The team attempted to use another segment-based algorithm, Mask R-CNN, which can work

dynamically, in distinct locations, but it performed poorly. It can be retrained with a larger dataset

to get better performance.

• Classifier performance varies based on lighting conditions. An improved dataset comprising images

taken from the Coral camera will be useful to ensure more accuracy.

• Implement a zoning system in the SQL database and UI form to allow users to select zones they

prefer to park in large venues (e.g., proximity to specific seats in a large stadium)

• Integrate images from multiple cameras for a larger field of view as the current system only includes

66 parking spaces

• The attempted geolocation method on the UI to help users dynamically move on the navigation

screen (as opposed to a static path) can be unreliable depending on the browser, an alternative

method to improve the navigation must be researched

iValet 32

9. Leadership Roles

The leadership roles are listed as follows in Table 8.

Table 8. Roles of team members

Role Description Team Member

Design Lead In charge of keeping the team to the design

schedule and tracking what deliverables were

met.

Wei Xiong Toh

Software Lead Leads and directs tasks related to the computer

vision, pathfinding, and user interface.

Wei Xiong Toh

Hardware Lead Leads tasks related to setting up camera and

processor in testing environments.

Kelin Yu

Testing Lead In charge of delegating and tracking all testing

processes.

Yunchu Feng & Wei

Xiong Toh

Documentation Keeps track of all documentation including

notes, deliverables, etc.

Yunchu Feng

Webmaster Will head design and content of the project

website.

Faiza Yousuf

Expo Coordinator Ensures the project is presentable at the expo

(necessary PowerPoints, video footage,

monitors, posters, etc.)

Faiza Yousuf & Wei

Xiong Toh

iValet 33

10. References

[1] INRIX, “Searching for Parking Costs Americans $73 Billion a Year,” Inrix. https://inrix.com/press-

releases/parking-pain-us/ [Accessed May 02, 2022].

[2] “Home,” PlacePod. https://placepod.com/ [Accessed May 02, 2022].

[3] “Dev Board,” Coral. https://coral.ai/products/dev-board/ [Accessed May 02, 2022].

[4] “Camera,” Coral. https://coral.ai/products/camera/ [Accessed May 02, 2022].

[5] Learning Center. 2021. What is OSI Model | 7 Layers Explained | Imperva. [online] Available at:

<https://www.imperva.com/learn/application-security/osi-model/> [Accessed 22 November 2021].

[6] Hack Reactor, “What is JavaScript used for?,” Hack Reactor, 26-Aug-2021. [Online]. Available:

https://www.hackreactor.com/blog/what-is-javascript-used-for. [Accessed: 22-Nov-2021].

[7] "ISO/IEC/IEEE International Standard for Systems and software engineering -- Content management

for product life-cycle, user, and service management documentation," in ISO/IEC/IEEE 26531:2015 (E) ,

vol., no., pp.1-60, 15 May 2015, doi: 10.1109/IEEESTD.2015.7106441.

[8] “ISO/IEC/IEEE Draft International Standard - Systems and Software Engineering-- Life Cycle

Management-- Part 2: Guidelines for the Application of ISO/IEC/IEEE 15288 (System Life Cycle

Processes). IEEE, 2018, pp. 1–69.”

[9] Chanco Schiffer Law, LLC. 2021. Georgia’s Video Recording Laws. [online] Available at: [Accessed

22 October 2021].

[10] Kenneth and P. Articles, “Parking guidance systems,” PARKING GUIDANCE SYSTEMS, LLC., 02-

Mar-2020. [Online]. Available: https://parkingguidancesystems.com/. [Accessed: 07-Oct-2021].

[11] “Plans and Pricing,” Netlify. https://www.netlify.com/pricing/ (accessed May 02, 2022).

[12] Salary.com, “Unlock the power of pay,” Salary.com, 01-Apr-2021. [Online]. Available:

https://www.salary.com/. [Accessed: 22-Nov-2021].

https://inrix.com/press-releases/parking-pain-us/
https://inrix.com/press-releases/parking-pain-us/
https://placepod.com/
https://coral.ai/products/dev-board/
https://coral.ai/products/camera/
https://www.hackreactor.com/blog/what-is-javascript-used-for
https://parkingguidancesystems.com/
https://www.netlify.com/pricing/
https://www.salary.com/

iValet 34

Appendix A

Project Website

https://eceseniordesign2022spring.ece.gatech.edu/sd22p37/

Project Demo Video

https://drive.google.com/file/d/1vpijONvjzTPr2089D6ewCtY7oModstjp/view?usp=sharing

Final Presentation

https://docs.google.com/presentation/d/1iCwHxiddyIrrpUa8-

g1fNoHMb90EUD5qlaEiYZfCxuM/edit?usp=sharing

EXPO Poster

https://docs.google.com/presentation/d/16W4DV4rCXY2BUOCvoMsAo1zAl-

zIN6Gf/edit?usp=sharing&ouid=104356297121719412631&rtpof=true&sd=true

Design Review Presentation

https://docs.google.com/presentation/d/1qZ9jTlgd1fxjsgbVpeiUAxHusKAFGBr54G2pZNemn98/edit?usp

=sharing

Proposal Presentation

https://docs.google.com/presentation/d/1g54UxryRkfnSOuQ-

JeoBnaMlSywAq_rm5Q9VdJ5JtDI/edit?usp=sharing

https://eceseniordesign2022spring.ece.gatech.edu/sd22p37/
https://docs.google.com/presentation/d/1iCwHxiddyIrrpUa8-g1fNoHMb90EUD5qlaEiYZfCxuM/edit?usp=sharing
https://docs.google.com/presentation/d/1iCwHxiddyIrrpUa8-g1fNoHMb90EUD5qlaEiYZfCxuM/edit?usp=sharing
https://docs.google.com/presentation/d/16W4DV4rCXY2BUOCvoMsAo1zAl-zIN6Gf/edit?usp=sharing&ouid=104356297121719412631&rtpof=true&sd=true
https://docs.google.com/presentation/d/16W4DV4rCXY2BUOCvoMsAo1zAl-zIN6Gf/edit?usp=sharing&ouid=104356297121719412631&rtpof=true&sd=true
https://docs.google.com/presentation/d/1qZ9jTlgd1fxjsgbVpeiUAxHusKAFGBr54G2pZNemn98/edit?usp=sharing
https://docs.google.com/presentation/d/1qZ9jTlgd1fxjsgbVpeiUAxHusKAFGBr54G2pZNemn98/edit?usp=sharing
https://docs.google.com/presentation/d/1g54UxryRkfnSOuQ-JeoBnaMlSywAq_rm5Q9VdJ5JtDI/edit?usp=sharing
https://docs.google.com/presentation/d/1g54UxryRkfnSOuQ-JeoBnaMlSywAq_rm5Q9VdJ5JtDI/edit?usp=sharing

iValet 35

iValet 36

QFD

iValet 37

GANTT

iValet 38

