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Introduction
Drivers spend 17h per year on average searching for parking. 
The estimated cost of the wasted time, fuel and emissions 
produced by these drivers amount to $345 a year.

iValet aims to alleviate this problem by directing drivers to the 
nearest empty parking spot once they enter the parking lot.



Cost
Item Cost

Google Coral $132.99

Coral Camera $21.99

SD Card $6.19

Tripod $24.99

Printed Coral Case NA

Total $186.16



System Diagram



Hardware
● Google Coral

○ Runs Mendel Linux (Debian derivative)
○ Supports TensorFlow Lite
○ Mainly compatible with Python and C++

● Coral camera
○ 87.6° field of view
○  2582 x 1933 active array size
○ 50/60 Hz lumination

● Printed coral case
○ 3-D printed box and frame
○ Stabilizing the camera within a 90° angle



First Approach - Segmentation

Mask R-CNN:

Framework for object instance segmentation.

Loading dataset Building bounding box



First Approach - Segmentation

Static Image test CRC test

Performance of CRC is bad, so we use another approach for it.



Pre-defined image:

Restoring vertice of each slots in an array.

Segmented parking slots Results after classifying

Segmentation



Segmentation



Classification
Using TensorFlow 2.0.0 CNN

3 Convolution Layer with Max-Pool with Dense Layer

Binary output: 0-Empty, 1-Occupied.





Principle of vanishing points

RANSAC algorithm to identify vanishing points 

Image Rectification



A* Pathfinding Algorithm
Image mask to identify obstacles 



Distance Calculation



● Postgres Database Schema
○ Lot_id - Lot number (0 to 65 at the CRC)
○ Empty -  0 or 1 to show if this lot_id is 

occupied
○ Distance - distance this lot is from the 

entrance, used to sort database in order 
of closest to farthest available, then 
closest to farthest occupied

○ License Plate - input from the user 
interface, currently only used to log who 
parked where, at what time, and for how 
long 

○ Handicap - 0 or 1 marks if this spot is 
handicap or not

○ Time Parked - datetime variable used to 
track the time the person started and 
ended parking.

SQL Database



User interface - Tools/Libraries
● Frontend - React

○ Google Maps/Navigation -  @react-google-maps/api
○ Google Authentication -  react-google-login
○ Payment (Stripe) -  @stripe/react-stripe-js
○ Navigation Indicator - react-navigator-geolocation (Unreliable in 

multiple browsers)
● Backend - Express & Node.js

○ SQL - PostGreSQL
○ Payment - Axios - axios

■ Rest API based in Angular.js, capable of intercepting and canceling 
requests, built-in client-side protection against cross-site request 
forgery



User Interface - Landing Page
● To avoid users needing to download an app, ideally a QR code at the lot 

entrance would lead them to this landing page

Landing Page Google Login



User Interface - User Inputs
● Users are able to input their license 

plate and handicap needs. 
○ (If Handicap is not available, 

routed to the closest parking 
spot)

● License plate info is currently used 
for logging history only (who 
parked in what spot, at what time)
○ Could be utilized to double 

check which spots users 
actually parked in the future

Navigates from “Add Your Car Info” 



User Interface - Navigation
● Three navigation screens

1) Parking your Car - shows a route 
from the entrance to the 
appropriate spot

2) Find your Car - when the user 
returns to the parking lot, a map 
from the entrance of the building to 
their car

3) Exit the Lot - after the user has paid, 
they will be shown a map navigating 
them from their spot to the lot exit 

Map to initially park 



User Interface - Navigation

Map to find parked car Map to exit parking lot after paying



User Interface - Navigation
● Each embedded map is centered on the CRC 

latitude and longitude coordinates in Google 
Maps

● Each parking lot is assigned three .KML files, 
ParkCrc#, FindCrc#, ExitCrc# 

● KML is a custom route drawn in Google maps. 
● The routes are accessed by the raw address 

of the .KML on GitHub
○ https://raw.githubusercontent.com/Robuddies/iValetUpdate/b

ackend/KMLs/FindCrc52.kml

KMLs in GitHub



User Interface - Payment
● Payment amount is scaled by 

CRC costs and how long the 
user has been logged (SQL 
query)

● After payment is processed, 
(Pay button) users will be taken 
to the Exit Navigation screen

Calculated payment amount

Credit Card input

Prompt to exit the lot - navigates to 
exit map



Challenges

● Training the model with existing, online datasets caused inaccuracies when 
testing at the CRC (differences in lighting, intensity of shadows, etc.), 
required a lot of fine tuning once CRC testing began

● The trained Mask R-CNN model didn’t work well with parking lots at CRC 
because of different angles and insufficient trained data. Using 
pre-segmented images with a classifier to solve this problem

● Coral was incompatible with Microsoft SQL Server (driver issue), had to 
switch to PostGreSQL



Future Work & Current Drawbacks
● The current design needs pre-defined images of parking spaces, so the it 

cannot be used in unknown areas immediately. 

● We attempted  to use another segment-based algorithm, Mask R-CNN, which 
can work in different places, but it does not work well. We can retrain it with a 
larger dataset to get better performance.

● Classifier performance varies based on lighting conditions. An improved 
dataset comprising images taken from the Coral camera will be useful to 
ensure more accuracy.

● Implement a zoning system in the SQL database and UI form to allow users to 
select zones they prefer to park (e.g proximity to seats in a large stadium)

● Integrate images from multiple cameras for a larger field of view.

● Current geolocation method on the UI to help users on the navigation screen 
can be unreliable, need to research another method


