
iValet Final 
Presentation

Faiza Yousuf, Wei Xiong Toh, Kelin 
Yu, Yunchu Feng



Introduction
Drivers spend 17h per year on average searching for parking. 
The estimated cost of the wasted time, fuel and emissions 
produced by these drivers amount to $345 a year.

iValet aims to alleviate this problem by directing drivers to the 
nearest empty parking spot once they enter the parking lot.



Cost
Item Cost

Google Coral $132.99

Coral Camera $21.99

SD Card $6.19

Tripod $24.99

Printed Coral Case NA

Total $186.16



System Diagram



Hardware
● Google Coral

○ Runs Mendel Linux (Debian derivative)
○ Supports TensorFlow Lite
○ Mainly compatible with Python and C++

● Coral camera
○ 87.6° field of view
○  2582 x 1933 active array size
○ 50/60 Hz lumination

● Printed coral case
○ 3-D printed box and frame
○ Stabilizing the camera within a 90° angle



First Approach - Segmentation

Mask R-CNN:

Framework for object instance segmentation.

Loading dataset Building bounding box



First Approach - Segmentation

Static Image test CRC test

Performance of CRC is bad, so we use another approach for it.



Pre-defined image:

Restoring vertice of each slots in an array.

Segmented parking slots Results after classifying

Segmentation



Segmentation



Classification
Using TensorFlow 2.0.0 CNN

3 Convolution Layer with Max-Pool with Dense Layer

Binary output: 0-Empty, 1-Occupied.





Principle of vanishing points

RANSAC algorithm to identify vanishing points 

Image Rectification



A* Pathfinding Algorithm
Image mask to identify obstacles 



Distance Calculation



● Postgres Database Schema
○ Lot_id - Lot number (0 to 65 at the CRC)
○ Empty -  0 or 1 to show if this lot_id is 

occupied
○ Distance - distance this lot is from the 

entrance, used to sort database in order 
of closest to farthest available, then 
closest to farthest occupied

○ License Plate - input from the user 
interface, currently only used to log who 
parked where, at what time, and for how 
long 

○ Handicap - 0 or 1 marks if this spot is 
handicap or not

○ Time Parked - datetime variable used to 
track the time the person started and 
ended parking.

SQL Database



User interface - Tools/Libraries
● Frontend - React

○ Google Maps/Navigation -  @react-google-maps/api
○ Google Authentication -  react-google-login
○ Payment (Stripe) -  @stripe/react-stripe-js
○ Navigation Indicator - react-navigator-geolocation (Unreliable in 

multiple browsers)
● Backend - Express & Node.js

○ SQL - PostGreSQL
○ Payment - Axios - axios

■ Rest API based in Angular.js, capable of intercepting and canceling 
requests, built-in client-side protection against cross-site request 
forgery



User Interface - Landing Page
● To avoid users needing to download an app, ideally a QR code at the lot 

entrance would lead them to this landing page

Landing Page Google Login



User Interface - User Inputs
● Users are able to input their license 

plate and handicap needs. 
○ (If Handicap is not available, 

routed to the closest parking 
spot)

● License plate info is currently used 
for logging history only (who 
parked in what spot, at what time)
○ Could be utilized to double 

check which spots users 
actually parked in the future

Navigates from “Add Your Car Info” 



User Interface - Navigation
● Three navigation screens

1) Parking your Car - shows a route 
from the entrance to the 
appropriate spot

2) Find your Car - when the user 
returns to the parking lot, a map 
from the entrance of the building to 
their car

3) Exit the Lot - after the user has paid, 
they will be shown a map navigating 
them from their spot to the lot exit 

Map to initially park 



User Interface - Navigation

Map to find parked car Map to exit parking lot after paying



User Interface - Navigation
● Each embedded map is centered on the CRC 

latitude and longitude coordinates in Google 
Maps

● Each parking lot is assigned three .KML files, 
ParkCrc#, FindCrc#, ExitCrc# 

● KML is a custom route drawn in Google maps. 
● The routes are accessed by the raw address 

of the .KML on GitHub
○ https://raw.githubusercontent.com/Robuddies/iValetUpdate/b

ackend/KMLs/FindCrc52.kml

KMLs in GitHub



User Interface - Payment
● Payment amount is scaled by 

CRC costs and how long the 
user has been logged (SQL 
query)

● After payment is processed, 
(Pay button) users will be taken 
to the Exit Navigation screen

Calculated payment amount

Credit Card input

Prompt to exit the lot - navigates to 
exit map



Challenges

● Training the model with existing, online datasets caused inaccuracies when 
testing at the CRC (differences in lighting, intensity of shadows, etc.), 
required a lot of fine tuning once CRC testing began

● The trained Mask R-CNN model didn’t work well with parking lots at CRC 
because of different angles and insufficient trained data. Using 
pre-segmented images with a classifier to solve this problem

● Coral was incompatible with Microsoft SQL Server (driver issue), had to 
switch to PostGreSQL



Future Work & Current Drawbacks
● The current design needs pre-defined images of parking spaces, so the it 

cannot be used in unknown areas immediately. 

● We attempted  to use another segment-based algorithm, Mask R-CNN, which 
can work in different places, but it does not work well. We can retrain it with a 
larger dataset to get better performance.

● Classifier performance varies based on lighting conditions. An improved 
dataset comprising images taken from the Coral camera will be useful to 
ensure more accuracy.

● Implement a zoning system in the SQL database and UI form to allow users to 
select zones they prefer to park (e.g proximity to seats in a large stadium)

● Integrate images from multiple cameras for a larger field of view.

● Current geolocation method on the UI to help users on the navigation screen 
can be unreliable, need to research another method


