VIASAT AMEND Project
Final Design Review

Machine Learning Team

4/19/2022

Problem Statement

& ER

Main Goal: Track satellites to Develop controls to physically move Normally controls are done with Now implementing with machine
maximize Gain-to-Noise ground dishes to point in proper traditionally calibrated PID systems learning techniques based on
direction simulation databases

Project Description

We want to design and implement a ML algorithm to The goal is to create increasingly accurate PI
accept a wide range of RF inputs and generate PI parameters that produce improved corrective actions
parameters to take predictive actions. for the tracking system.

Why is this useful?

* Minimize the amount of time between the acquisition of
satellite position data and the execution of control system protocols
for corrective actions to the ground station’s servo motors.

* Accounts for dynamic satellite data through automatic initialization of
control parameters.

Main steps to take:

Develop method of extracting data from Implement ML algorithm to guess

Create training data that will hold data
the RF model updated PID parameters

points generated from the existing RF
model

Existing Infrastructure

* Matlab/Simulink model that simulates
dynamic response of antenna tracking
system in time domain

* Model is used to reliably generate training

data for the ML algorithm | R — - il g s
!
* Work is in close conjunction with
AMEND Analog team
* Analog team can at any point provide us Block diagram for existing RF model

with an updated model to generate more
accurate data

ldeation and Tradeoffs

* Solution uses MATLAB to generate a database and uses Python
libraries such as TensorFlow to run an RNN algorithm

* Implementing solution within MATLAB toolbox is not computationally ideal
* RNN feeds output back into MATLAB input

e Got rid of the Derivative (D) block, but it can be added back later

Defining plant outputs

* angle_| --- elevation angle
e angle_m --- azimuthal angle

* wl, wm --- angular frequencies in rad/s

Zero |.C. forAll Sampleat DT

State Variables Controller
Sampling Rate

0]
1)—» T
wm
O I~
wi
] »-K1*u
G IR € \
angle_m || [i
) O o s e
angle_|
k+1] Tt Oy 1K] = O]
(5D 0] 101
estimated angle
off boresight
(i)L[k] = Buurlk]

Solution Block Diagram

* How fast is update?

e Approximately 1 kHz for new reference satellite
positions
* Minutes to hours for control parameters.
* Error constraint —aim to implement upper

threshold on RMS error in order to systematically
tune the tracking system's desired accuracy.

Controller
(PID)

PID parametefs"‘

ML(RNN, !
RL,DNN, CNN)

Figure 2. Block Diagram for proposed solution

Data Generation

ARRNNN
i1 |
i |
i |
i |
i |
i |
AENRNNN
RMS error — incorporates both signal overshoot and Classical control system design can be used to
damping delay in its calculation — optimal for training generate controller parameter datasets used to train

ML algorithm to decrease both nonidealities the ML block.

Data Generation

* We apply variations to the eigenvalue "Lambda“
* There is a direct dependence of Kp and Ki on this parameter.
* We generate different errors, outputs, Kp and Ki's, and RMS errors.

%% Determine controller constants K1 and K2

scriptA = [Ad zeros(4,1); Tctrl*C 1];

scriptB = [Bd; @];

K = acker(scriptA, scriptB, exp(—Tctrl).*ones(l,S));
K1 = K(1:4); % State feedback gains.

K2 = K(5); % Error feedback gain.

Relationship between Kp, Ki, and Lambda

Data Generation Code

* Chooses different Lambda values to generate new K1 and K2 values
* Runs simulation with updated K1 and K2

* Writes RMS of output angle, as well as corresponding K1 & K2 to
training data

%loop generating training data
Z = 10:0.01:33;
for i=1:length(z) %stopped at 2990
[K1, K2] = init_controller_params(z(i)); %run params with new Lambda, get back K1, K2
out = sim('slow_time'); %run simulation with new K1, K2
gen_data(out,K1,K2); %generate data with new output values
disp(z(i))
end

Data Generation Code

* Writes RMS of output angle, as well as corresponding K1 & K2 to
training data

%after a new Lambda has been set
function gen_data(out,K1,K2)
%calculate RMS for angle_1
sum = @;
angle_1 vector = out.yout{l}.Values.angle_l.Data;
theta_test_sat = angle_l1_vector(end);
for i=1: length(angle_l vector)
sum = sum + (angle_1_vector(i)-theta_test_sat)”"2;
end
RMS = sgrt(sum);

%write R (theta_test_sat), RMS, K1, K2 to training data file

vec_out = [theta_test_sat RMS K1 K2];

writematrix(vec_out, 'data_train.csv', 'WriteMode', 'append');
end

Create Python Environment

Set up libraries such that
the ML algorithm can be
run directly from MATLAB
Only requires Python to
be installed on machine
Data generation will
create .csv files in location
Python code will runin
Matlab, take training
data, and generate results

S W NBRE

fFun

end

import os

try:

Xie
import matp 1ib
print("” i 'matplotlib’ i

xcept ModuleNotFoundError:

print("module 'matplotlib' is not installed™)
os.system("pip3 install matplotlib -t .")

Ly

import

> 'pandas' is installed")
except ModuleNotFoundError:

print("module 'pandas' is not installed”)
os.system("pip3 install pandas -t .")

Ery:

import

print("module 'numpy' is installed")

except ModuleNotFoundError:

ction py_code
system("python3
system("python3

print("module ‘numpy' is not installed")
os.system("pip3 install numpy -t .")

install_package.py") %install packages if not there already
ran.py") %run actual ML script

Python script generating Kp, Ki

* Goal: Take in the output of the model as input (angle_m, angle_|, wm, wl) and determine Kp and Ki
through optimal lambda.

* The script trains the RNN algorithm by comparing the RMS error in the plant's output to those present in
the list of training data. An upper limit can be placed on the RMS error as a constraint on
the output Kp and Ki values.

* The training dataset comprises of angle_| RMSE, K1, K2, reference angle (r), and Lambda.

e Chooses ideal lambda to determine Kp and Ki.

dataset_total = pd.concat((dataset train['RMS'],dataset_test['RMS']),axis = @)
inputs - dataset_total[len(dataset total) - len(dataset_test) - 30:].values
inputs = inputs.reshape(-1,1)
inputs = sc.transform(inputs)
X_test = []

i range (30, 2300):

X_train = []

Y_train = []
i
X_train.append(training_set_scaled[i-30:i,0])
Y_train.append(training_set_scaled[i,@])

X_train, Y_train = np.array(X_train), np.array(Y_train)

X_test.append(inputs[i-30:1,08])
X_test = np.array(X_test)
X_test = np.reshape(X_test, (X _test.shape[0], X_test.shape[1], 1))
predicted_RMS - regressor.predict(X_test)
predicted_RMS = sc.inverse_transform(predicted_RMS)

X_train = np.reshape(X_train, (X_train.shape[@], X _train.shape[1],1))

Current RNN code

* We set up RNN code that imports desired libraries

* Code uses “out.csv” as input and pulls RMS data out to be the training set
* 10000 step time series for angle_|, angle_m, wm, wl

* The machine Learning block shall be utilized to optimize this position correction
process by setting a threshold RMS error as an upper limit on the accepted amount of
error that can be tolerated by the control system.

* Qutput is a prediction of the RMS at a lambda value to be used for optimal Ki and Kp

* We can use the updated plant from the hardware team to generate datasets.

Working Results

Predicted RMS Against Actual RMS

- Real Data RMS
0.10 - Predicted Data RMS

0.09 1

0.08 1

RMS

0.07 1

0.06 1

0.05 4

0.04 1

10 15 20 25 30
Lambda

Plant Output vs Time

103 Controller Outputs for A = 25 vs. A = 20, O = v = 0.25 degrees = 0.00436 radians
6~ T T T T T T T T
i—_ output ¥ (angle ;o)
i— output ¥ (angle; y_ax)
5
X 10
Y 0.00436143
4]
5 3r -
A
‘j.
= o2 o
Tk =
0 l _
1 | | I | [| \ |
0 1 2 3 4 5 6 7 g 9 10

Time(s)

Adding dynamic input

 Test with functions like square and sine instead of constant reference
* Achieved some level of tracking with a square wave
* Lower lambda used -> Slower changes to track

itput vs. Time (A =5, K; = [662, —442,2337, 1779, K, = [561.3872], r = 2 (square(2t)) degrees ~ & (square(2t)) rad)
T T T T T

rees = 7 (square(2t)) rad)

Future Work

* Experiment with and improve control system for better dynamic
tracking

A derivative (D) block can be added in the Simulink to create a
PID controller instead of the Pl used in this project for higher
accuracy

* A <30% overshoot parameter can be added to the
machine learning algorithm for better control

Auto-track Model with Error and Noise for Dishes (AMEND)

Machine Learning Team
Undergraduate Team: Mikias Balkew, Adrija Bhattacharya, Tyler Cole, Shreyas Mhasawade, Chris Rothmann
Faculty Advisor: Dr. Xiaoli Ma

Georgia
@F Tech.

Viasat"

Background

Q The number of Low Earth Orbit
(LEO) satellites are increasing, which
requires significant investment in
ground stations for communications

Goal: create a machine learning
(ML) algorithm capable of generating
reliable PID controller parameters for
the Auto-tracking Control System
designed to keep a ground station's
parabolic dish pointed.at a.LEQ
sajellite.at all times.

Fig 1. Viasat 7m dish

Why': Minimize the amount of time
between the acquisition of satellite
position data and the execution of
control system protocols for corrective
actions to the ground station’'s servo
motors, accounting for dynamic
satellite data through automatic

Method

O The existing model from last year
will produce some representative
data for chosen scenarios, and the
data generated will create more
accurate inputs for the PID
controller by using machine
learning techniques for analysis

=

Fig 2. Block Diagram for the existing RF Model!

0 RMS error incorporates both signal
overshoot and damping delay in its
calculation and is thus optimal for
ML training

O Classical control system design is
used to generate control parameter
data used to train the ML block

A @

Fig 3. Block Diagram for proposed solution. The
MATLAB code is used to generate data which
feeds into the ML code which is run in Python

MATLAB Code

O The MATLAB script is utilized to
generate different K1 and K2 values
based on strategic eigenvalue
placement

O Simulations are run with updated K1
& K2 parameters

O RMS of output angle and
corresponding K1 & K2 are written to
training data set

O RMS data serves as training data for
the ML algorithm

Python Code

O The Python script trains the RNN
algorithm by comparing the RMS
error in the plant's output to that
present in the training data

Fig 4. Graph of plant outputs as a function of
time for two different lambda values

Predicted RMS Against Actual RMS

Oata B
— Freactes Data kS

E)) ®
[

Fig 5. Graph showing predicted RMS plotted
against the Lambda value to demonstrate improved
RMS error through the ML algorithm

Future Work

Q A derivative (D) block can be added
in the Simulink to create a PID
controller instead of the Pl used in
this project for higher accuracy

0 A < 30% overshoot parameter can
be added to the machine learning
algorithm for better control

References

initialization of control parameters.

" OQ

Normally controls are Now implementing with machine
done with traditionally learning techniques based on
L calibrated PID systems simulation databases

Create MATIAB database that withhotd datapoints
generated from the existing RF model

Develop method of extracting data from the RF
model and transfer it into the ML algorithm

O An upper limit will be placed on the
RMS error as a constraint on
the output Kp and Ki values

QO The Python code also graphs a
predictive plot comparing the
RMSE value of the training data

against the test data
_

[1] Ziegler, J. G., and N. B. Nichols. *Optimum Setlings for Automatic:
Controflers.* Journal of Dynamic Systems, Measurement, and
CGontrol, vol. 115, no. 26, 1993, pp. 220-222
hitps:/fdol.org/10.1115/1.2898060.

[2) Zulu, Andrew. “Towards Explicit PID Control Tuning Using Machine
Learning.” 2017 IEEE AFRICON, 2017,
hitps://dol org/10.110%/afrcon. 20178085520,

[3) Davis, Zachary et al. *A Causal Model Approach to Dynarmic
Control” Cognitive Science (2018): 281286

o

Questions?

