
VIASAT AMEND Project
Final Design Review

Machine Learning Team

4/19/2022



Main Goal: Track satellites to 
maximize Gain-to-Noise

Develop controls to physically move 
ground dishes to point in proper 

direction

Normally controls are done with 
traditionally calibrated PID systems

Now implementing with machine
learning techniques based on 

simulation databases

Problem Statement



Project Description

We want to design and implement a ML algorithm to 
accept a wide range of RF inputs and generate PI 

parameters to take predictive actions.

The goal is to create increasingly accurate PI 
parameters that produce improved corrective actions 

for the tracking system.



Why is this useful?

• Minimize the amount of time between the acquisition of 
satellite position data and the execution of control system protocols 
for corrective actions to the ground station’s servo motors.

• Accounts for dynamic satellite data through automatic initialization of 
control parameters.



Main steps to take:

Create training data that will hold data 
points generated from the existing RF 

model

Develop method of extracting data from 
the RF model

Implement ML algorithm to guess 
updated PID parameters



Existing Infrastructure

• Matlab/Simulink model that simulates 
dynamic response of antenna tracking 
system in time domain

• Model is used to reliably generate training 
data for the ML algorithm

• Work is in close conjunction with 
AMEND Analog team

• Analog team can at any point provide us 
with an updated model to generate more 
accurate data

Block diagram for existing RF model



Ideation and Tradeoffs

• Solution uses MATLAB to generate a database and uses Python 
libraries such as TensorFlow to run an RNN algorithm
• Implementing solution within MATLAB toolbox is not computationally ideal
• RNN feeds output back into MATLAB input

• Got rid of the Derivative (D) block, but it can be added back later



Defining plant outputs

• angle_l --- elevation angle
• angle_m --- azimuthal angle
• wl, wm --- angular frequencies in rad/s



Solution Block Diagram

• How fast is update?
• Approximately 1 kHz for new reference satellite 

positions
• Minutes to hours for control parameters.

• Error constraint – aim to implement upper 
threshold on RMS error in order to systematically 
tune the tracking system's desired accuracy.



Data Generation

RMS error – incorporates both signal overshoot and 
damping delay in its calculation – optimal for training 

ML algorithm to decrease both nonidealities

Classical control system design can be used to 
generate controller parameter datasets used to train 

the ML block.



Data Generation

• We apply variations to the eigenvalue "Lambda“
• There is a direct dependence of Kp and Ki on this parameter.
• We generate different errors, outputs, Kp and Ki's, and RMS errors.

Relationship between Kp, Ki, and Lambda



Data Generation Code

• Chooses different Lambda values to generate new K1 and K2 values
• Runs simulation with updated K1 and K2
• Writes RMS of output angle, as well as corresponding K1 & K2 to 

training data



Data Generation Code

• Writes RMS of output angle, as well as corresponding K1 & K2 to 
training data



Create Python Environment

• Set up libraries such that 
the ML algorithm can be 
run directly from MATLAB

• Only requires Python to 
be installed on machine

• Data generation will 
create .csv files in location

• Python code will run in 
Matlab, take training 
data, and generate results



Python script generating Kp, Ki

• Goal: Take in the output of the model as input (angle_m, angle_l, wm, wl) and determine Kp and Ki 
through optimal lambda.

• The script trains the RNN algorithm by comparing the RMS error in the plant's output to those present in 
the list of training data. An upper limit can be placed on the RMS error as a constraint on 
the output Kp and Ki values.

• The training dataset comprises of angle_l RMSE, K1, K2, reference angle (r), and Lambda.

• Chooses ideal lambda to determine Kp and Ki.



• We set up RNN code that imports desired libraries
• Code uses “out.csv” as input and pulls RMS data out to be the training set

• 10000 step time series for angle_l, angle_m, wm, wl

• The machine Learning block shall be utilized to optimize this position correction 
process by setting a threshold RMS error as an upper limit on the accepted amount of 
error that can be tolerated by the control system.

• Output is a prediction of the RMS at a lambda value to be used for optimal Ki and Kp

• We can use the updated plant from the hardware team to generate datasets.

Current RNN code 



Working Results



Plant Output vs Time



Adding dynamic input

• Test with functions like square and sine instead of constant reference
• Achieved some level of tracking with a square wave
• Lower lambda used -> Slower changes to track



Future Work

• Experiment with and improve control system for better dynamic 
tracking

• A derivative (D) block can be added in the Simulink to create a 
PID controller instead of the PI used in this project for higher 
accuracy

• A < 30% overshoot parameter can be added to the 
machine learning algorithm for better control





Questions?


