

Project Proposal

Nabid Farvez, Ananth Kumar, Andrew Lang, Syed Samin, and Kai Vong February 9th, 2022

Georgia School of Electrical and Tech Computer Engineering

Problem

- Alarm clocks always wake users at a fixed time
- Being awakened during REM sleep can cause grogginess, formally known as "sleep inertia"

- Existing online "Sleep Calculators" that try to combat sleep inertia are very ineffective
 - Generalize that all sleep cycles average 90 minutes
- The problem is: when is the *healthiest* time for *me* to wake up?

Electronics box

Ready Every Morning Mask

Georgia School of Electrical and Tech Computer Engineering

Solution

- Current wearables:
 - Indirect method with heart rates, movement data, and machine learning
 - Estimation of sleep stages (~70% accurate)
- Our solution:
 - Direct method of measuring REM stages with eye movement during sleep; very accurate
 - <u>Goal</u>: wake users up on time, without compromising sleep quality
- We are unique in **TWO** key ways:
 - Can more accurately identify sleep stages, end of REM
 - Help users benefit from this data with "better" sleep!

Project Description

Product Overview:

Customer Requirements:

- Fashionable, comfortable, affordable, reliable, intuitive
- Engineering Requirements:
 - Battery life at least 10 hours, max. charge time of 2 hours

Proof of Function and Scope

- Proof of Function:
 - 1. Prove the device can accurately record EOG data.
 - 2. Prove the integrated software can recognize REM sleep from EOG data.
 - 3. Prove via *customer surveys* that the device fulfills its goal of maximizing quality of sleep.
- Scope:
 - Target any and all individuals who need to wake up at a specific time but also want to prioritize their sleep
 - Provide users with a product that maximizes the quality of their sleep without jeopardizing the timeliness of their waking up
 - Serve as a product that can be worn to sleep every night

House of Quality

Georgia School of Electrical and Tech Computer Engineering

9

Changes	D/W	Requirement	Responsibility	Source
2/1/22	W	Wake User Up at the Most Optimal Time	Team	Team
		Geometry		
2/1/22	W	Prefered Dimensions: 8.2 in x 4.5 in x 1 in	Kai	Team - min form factor for comfort/convience
2/1/22	W	Min Head Circumference: 21.5 in	Kai	Average mininum size for one size fit all hats
2/1/22	W	Max Head Circumference: 23 in	Kai	Average maximum size for one size fit all hats
		Energy		
2/1/22	D	Battery Capacity: 1200 mAh	Nabid	Battery- For a night of sleep
2/1/22	W	Product Temperature: Room Temp	Nabid	Team - Low power components
		Software		
2/1/22	D	Min Data Collection Rate: 100 Hz	Andrew	Based on eye movement rate.
2/1/22	W	Data Collection Rate: 200 Hz	Andrew	Team - higher collection rate for accuracy
2/1/22	D	Min Accuracy: 70%	Ananth	Based on Competitors
2/1/22	W	Preferred Accuracy: 90%	Ananth	Team
2/1/22	W	Sleep Classication Algorithm: 30 Seconds	Andrew	Team
		Safety		
2/1/22	D	Number of Loose Parts: 0	Kai	Team
2/1/22	D	Voltage Outside Of Mask: 0 V	Kai	Team
		Sustanability		
2/1/22	W	Product Lifetime: 3 years	Kai	Team
		Operation		
2/1/22	W	Max Operational Time: 10 Hours	Nabid	Team - For a night of sleep
2/1/22	W	Max Set-up Time: 2 Minutes	Nabid	Team - Try to reduce for convenience
2/1/22	W	Max Charge Time: 2 Hours	Nabid	Team - Try to reduce for convenience
		Cost		
2/1/22	W	Max Cost of System: \$90	Andrew	Team
		Materials		
2/1/22	W	Max EOG Sensors: 2	Nabid	Team
2/1/22	W	Max Temperature Sensor: 1	Nabid	Team
2/1/22	W	Max Mircotroller: 1	Nabid	Team
2/1/22	W	Max Number of Batteries: 1	Nabid	Team
		Ergonomics		
2/1/22	W	Wires Contained: 100%	Samin	Team
2/1/22	W	Aesthetic Appearance Jury: 95% concensus	Samin	Team
		Production		
2/1/22	W	Total Prototype Time: 10 hours	Kai	Team
		Schedule		
2/1/22	D	Prenstation and Project Proposal: 02/09/22	Team	Project Requirement
2/1/22	D	Presentation and Report #2: 03/16/22	Team	Project Requirement
2/1/22	D	Final Presentation: 04/20/22	Team	Project Requirement
2/1/22	D	Final Report: 4/29/22	Team	Project Requirement

Design Approach and Details

- Input the user's set alarm time and biometric data and dynamically schedule their alarm clock.
- Two-part system
- Specific constraints in a wearable device

Design Approach and Details

Small form factor PCB controller:

- Battery power worst-case analysis, runtime test
- BLE transmission test
- EOG scope measurement
- IMU/Temperature serial data breadboard test

Design Approach and Details

Specific design detail – when does the MCU sample and transmit data throughout the night?

Project Demonstration

- Recorded and classified data will be used to validate project idea
- Biometric data evaluation to demonstrate proof of function
 - Validate temperature sensor and accelerometer functionality overnight
 - Utilizing electrodes on temples to simulate an EOG waveform as shown below (nREM to REM)

- Live demonstration: demonstrate EOG sensor functionality
 - Smart controls
 - Live waveform recording

Schedule, Tasks, and Milestones

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12	Week 13	Week 14	Week 15	Week 16
Task	w/e 1/15	w/e 1/22	w/e 1/29	w/e 2/5	w/e 2/12	w/e 2/19	w/e 2/26	w/e 3/5	w/e 3/12	w/e 3/19	w/e 3/26	w/e 4/2	w/e 4/9	w/e 4/16	w/e 4/23	w/e 4/30
Team Formation																
Project Bidding																
Problem Statement						7										
Project Summary																
Project Proposal					•											
Project Research																
System Decomposition																
Part Selection/BOM																
Electrical Design**																
Firmware Design**																
Software Design**																
Mechanical Design**																
Electrical Integration**																
Firmware Integration**																
Software Integration**																
Mechanical Integration**																
Redesign																
Electrical Test**																
Firmware Test**																
Software Test**																
Mechanical Test**																
Full System Integration**																
Full System Testing**																
Data Collection																
Data Analysis																
Poster Design																
Final Report																
Ехро																

Electrical Tasks

Task #	Task	Relative Importance, Level of Importance	Predecessors	Members involved
E1	Simulate discrete EOG circuit backup	7,7		Nabid
E2	Assemble and test EOG AFE chip	10, 6		Nabid
E3	Wire temperature, IMU, SD card	5, 2		Nabid
E4	Full breadboard sensing test (EOG, temp, IMU, SD)	10, 5	E2, E3	Nabid, Syed
E5	Battery charge circuit test	7,4		Nabid
E6	Power analysis/measurement	8, 3	E4, E5	Syed
E7	PCB schematic design	9, 9	E4, E5	Nabid
E8	PCB board layout and ordering	10, 2	E7	Nabid
E9	PCB pinout test	7, 4	E8	Syed
E10	PCB fabrication	7,	E8	Nabid
E11	PCB power-on test	8, 4	E10	Nabid
E12	Full PCB sensor test	10, 6	E11	Nabid

Firmware Tasks

Task #	Task	Relative Importance,	Predecessors	Members involved
		Level of difficulty		
F1	Read IMU data	7,4	E3	Andrew
F2	Read EOG data over SPI and buffer it	10, 5	E2	Andrew
F3	Read temperature sensors	4, 3	E3	Andrew
F4	Establish a BLE connection – wearable side	10, 5	E4	Andrew, Syed
F5	Send EOG data over BLE	10, 5	F2, F4	Andrew
F6	Send IMU data over BLE	7,5	F1	Andrew
F7	Send temperature data over BLE	4, 5	F3	Andrew
F8	User interface development and integration	8, 8	E4	Andrew
F9	Refactor to minimize power	8, 8	E6, F5, F6, F7, F8	Andrew, Nabid
	consumption			

Software Tasks

Task #	Task	Relative Importance,	Predecessors	Members involved
		Level of difficulty		
S1	Establish a BLE connection – application side	10, 7	F4 (concurrent)	Syed
S2	Parse EOG data from BLE	10, 5	S1, F5	Ananth, Syed
S3	Parse IMU data from BLE	7, 5	S1, F6	Ananth, Syed
S4	Parse temperature data from BLE	4, 4	S1, F7	Ananth, Syed
S 5	Subdivide EOG data and extract features	10, 5	S2	Ananth, Andrew
S6	Classify REM versus nREM using data	10, 6	\$5, \$7	Ananth, Andrew
S 7	Create a model which classifies REM vs nREM sleep	10, 6		Syed, Ananth
\$7.5	Make the classification model loadable, not created	4, 5	S7	Ananth
	every time the application is launched			
S8	Create visualization tools to aid debugging and	4, 5	S2	Ananth
	demonstration			
S9	Smart Alarm Algorithm	4, 8	S6	Ananth
S10	Mobile Application – User Interface	8, 6		Syed
S11	Mobile Application - Integrate algorithm and sleeping	8,7	S6, S9	Ananth
	data with user interface			
S12	Mobile Application - Implement Bluetooth module fo	10, 6	S2, S3, S4	Syed
	data transfer between phone and mask			-
S13	Mobile Application – Integrate data classifier	10, 6	S12	Ananth
	in backend of application			
S14	Mobile Application – Develop easily-customizable	10, 5	S9, S11	Ananth
	alarm that will "go off" at time determined by			
	algorithm			

Mechanical Tasks

Task #	Task	Relative Importance,	Predecessors	Members involved
		Level of difficulty		
M1	BOM for mask	6, 2		Kai, Nabid
M2	Create General Layout	6, 4		Kai
M3	Material Selection (EDUPACK)	7,4	M1	Kai
M4	CAD Design	6, 8	E8, M3	Kai
M5	3D Printing/Resin Printing	6, 5	M4	Kai
M6	Prototyping Form Factor	8,7	E8, M5	Kai
M7	Prototyping Wearable Mask	8, 10	E10, M5, M6	Kai
M8	Obtain Customer Feedback for Mask	9, 2	M7	Team
M9	Iterate Design/Aesthetic adjustments (repeat M1	10, 8	M6, M7	Kai
	to M8 as necessary)			

Integration of Full System Tasks

Task #	Task	Relative Importance, Level of difficulty	Predecessors	Members involved
I1	Ensure electronics fit the form factor	9, 4	M6, E5, E12,	Kai, Nabid
12	Confirm connection between wearable and app	9, 5	I1, F9, S12	Syed
I3	Full System testing	9, 8	M7, S10, S14, I2	Team
I4	Full System debugging	9,9	13	Team
I5	Final System Integration	10, 9	I4	Team

Revenue					
Timeline (years)	5				
Serviceable Obtainable Market Size	4,804,082				
- Total addressable US Market (US residents who use an alarm clock)	226,746,586				
- Fraction of market which would consider wearing a sleep mask	53.60%				
- Fraction of those people that would tradeoff less sleep for a better wake up	73.20%				
- Fraction of those people that would use a sleep-tracking wearable	5.40%				
Unit price	\$150.00				
Total revenue over period	<mark>\$3,603,061,299</mark>				

COST ANALYSIS FOR THE SEMESTER (PRODUCT DEVELOPMENT)	
- Total Engineering Hours	750
- Team Members	5
- Weekly Hours Worked	10
- Project Duration (weeks)	15
- Hourly Engineering Rate (\$)	\$40.00
- Employee Benefits	\$5,000.00
- Reimbursed Expenses	\$2,500.00
TOTAL LABOR COST	\$37,500.00
TOTAL PROTOTYPING COSTS	\$270.08
- Anticipated Number of Prototypes	4
- Total Prototype Cost	\$67.52
- Sensing Subsystem	\$25.19
- Computing / Transmission Subsystem	\$20.00
- User Interface Subsystem	\$0.50
- Power subsystem	\$21.83
TOTAL SEMESTER COST	\$37,770.08

MANUFACTURING COSTS					
MANUFACTURING ENGINEER COSTS	\$260,000				
- Yearly Salary	\$52,000				
- Manufacturing Timeline (years)	5				
TOTAL PRODUCTION COST FOR ALL UNITS	\$2,420,488,540				
- Parts Pricing	\$60.77				
- Manufacturing labor cost for one unit	\$40.00				
- Total Expected Units Sold	24,020,408.66				
- Yearly Expected Units Sold	4,804,081.73				
- Product sales timeline (years)	5				
OVERHEAD COST	\$4,250,000				
- Facility cost	\$2,750,000				
- Amortized Machine Cost over 5 years	\$1,500,000				
- Total machinery cost	\$3,000,000				
- Average machine lifespan (years)	10				
Total Manufacturing Costs	<mark>\$2,424,998,540</mark>				

PROFIT	
Product Sale Revenue	\$3,603,061,299
Engineering Cost	(\$37,500.00)
Manufacturing Cost	(\$2,424,998,540)
TOTAL PROFIT	\$1,178,025,259
PROFIT PER UNIT	\$49.04

Current Status

Completed:

- Sleep and EOG research (ongoing)
- Project Proposal

k In progress:

- Breadboarding the EOG circuit (~15%)
- Hardware design (~65%)
- Firmware design (~60%)
- Software design (~25%)
- REM vs nREM classifier using third-party datasets (~15%)