
Report 2 – Design Review

Nabid Farvez, Ananth Kumar, Andrew Lang, Syed Samin, and Kai Vong March 17th, 2022

Georgia School of Electrical and Tech Computer Engineering

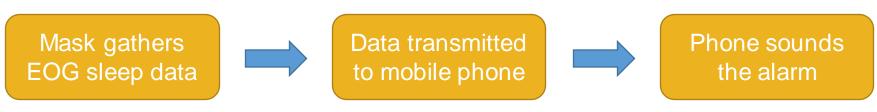
Problem

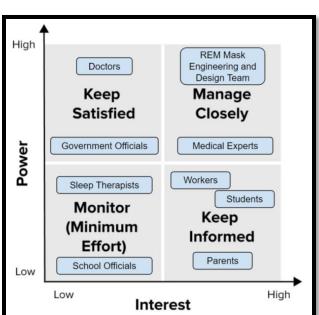
- Alarm clocks always wake users at a fixed time
- Being awakened during REM sleep can cause grogginess, formally known as "sleep inertia"

- Existing online "Sleep Calculators" that try to combat sleep inertia are very ineffective
- The problem is: when is the *healthiest* time for *me* to wake up?

Solution – Ready Every Morning Mask

- Current wearables:
 - Indirect method with heart rates, movement data, and machine learning
 - Estimation of sleep stages (~70% accurate)
- Our solution:
 - *Direct* method of measuring REM stages with eye movement during sleep; very accurate
 - <u>Goal:</u> wake users up on time, without compromising sleep quality
- We are unique in **TWO** key ways:
 - Can more accurately identify sleep stages, end of REM
 - Help users benefit from this data with "better" sleep!




sleepyti.me												
I have to wake up at												
7 v 35 v PM v												
Sleepyti.me												

Solution Description

Product Overview:

- Customer Requirements:
 - Fashionable, comfortable, affordable, reliable, intuitive
- Engineering Requirements:
 - Battery life at least 10 hours, max. charge time of 2 hours

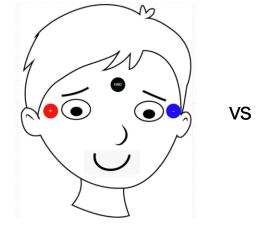
Prototype Design

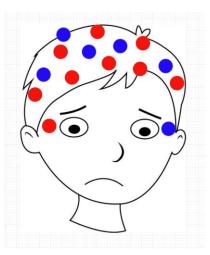
First Design

Second Design

Overall Dimensions: 8.3in x 3.75in x 1.1*in

Overall Dimensions: 5in x 2.2in x 0.9*in

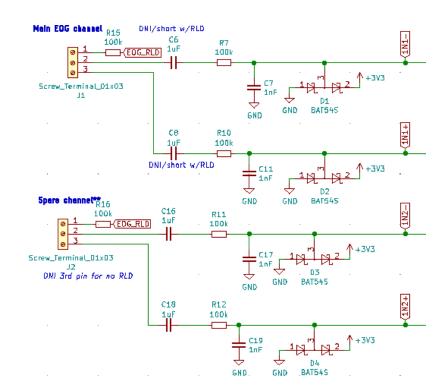

- As a prototype, designed to go over an existing sleeping mask.
- 2nd design is much more compact
- Weight of box is 35g. The entire assembly is 80.5g or ~0.2lb. Previously 161.5g.
- Due to curvature of the print, resin printing will be taken into considerations.
- Once second design assembled, a simple survey will be used to judge comfort and aesthetic.


Side view

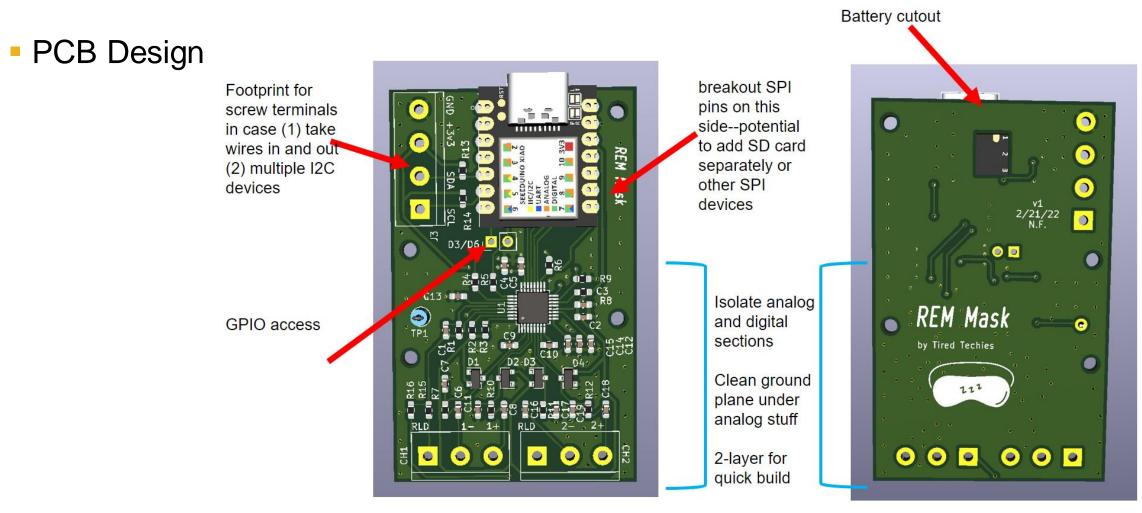
*Thickness

EOG

- Minimally intrusive method of **direct** sleeping signal measurement
- Detect eye movement—key feature of REM cycles
- ADS1292 selected
 - Configurability for 2-channel if needed later (horizontal + vertical)
 - Right leg drive capability—noise rejection with "active" grounding
 - Integrated analog front-end solution for low-power sensing
 - Common interface: SPI
 - Manufacturability/availability
 - TI documentation

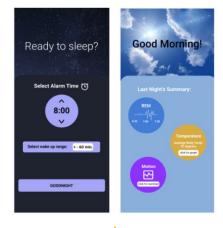


- MCU Selection
 - Toolchain familiarity for compressed timeline Arduino
 - BLE capability with pre-certified module
 - Small form factor
 - Peripherals SPI and I2C line
 - Integrated battery charge circuitry
 - Integrated IMU



XIAO Seeed vs. ESP32 board scale-accurate board estimate

- Human body interface
 - Gel electrodes
 - Disposable
 - Better measurements for proof-of-concept
 - Standard protection circuitry (IEC 60601)
 - Diode ladder for transient voltage surges
 - Series resistor to body
 - DC blocking capacitors
 - Decoupling caps for high frequency noise/transience
- Lipo battery and charge circuit
 - Rechargeable
 - Compact form factor
- Temperature sensor
 - Contactless measurement over I2C
 - Comfort



3.8 cm x 6 cm

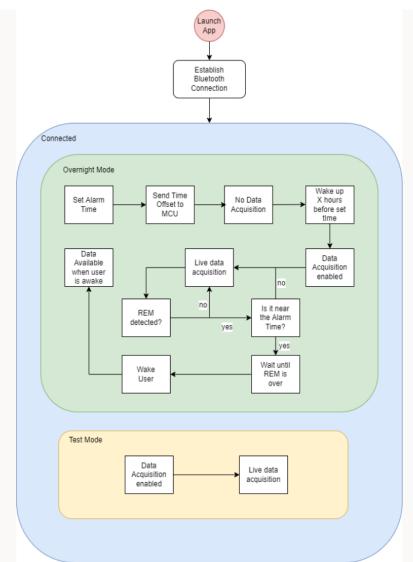
Application Design

Original Plan: Smartphone App

Problems:

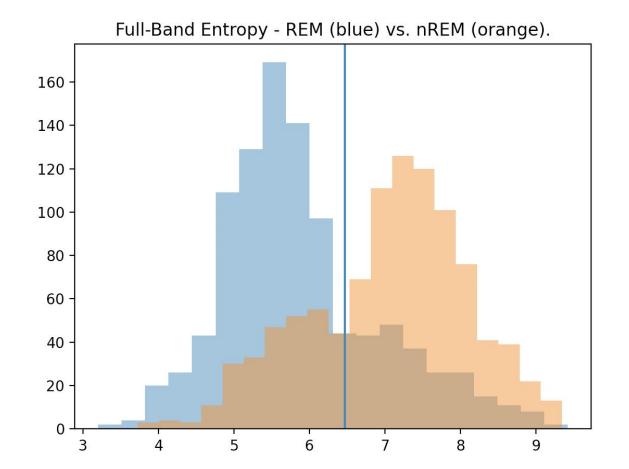
•

- May take too long to create and design fully functional smartphone app
- But.. could be used for the project in the future!


Solutions:

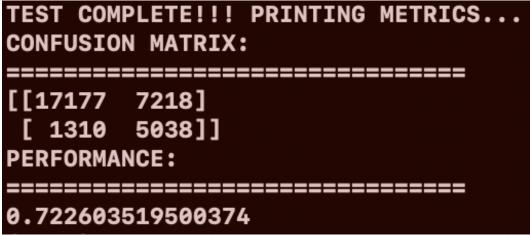
٠

- Python libraries available for GUI design (Tkinter), plotting data (matplotlib), and BLE connection
- Easier to implement algorithm functionality and can be done in shorter period of time

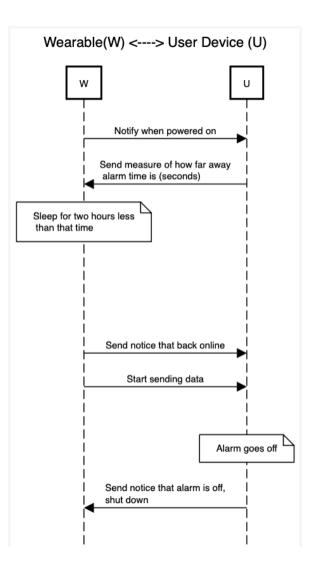

Application Design

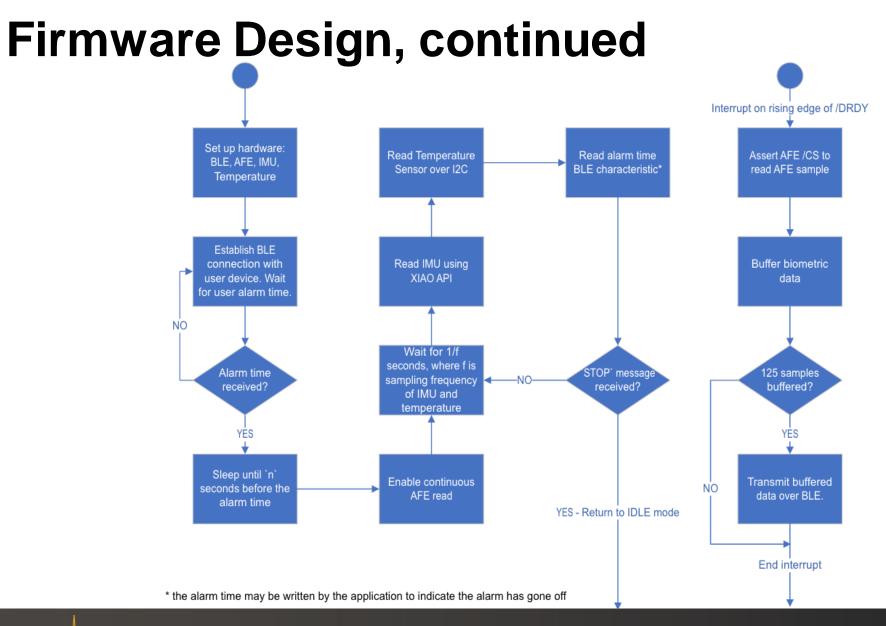
- Application Design Decisions:
 - Allow user to specify "range" of times for alarm
 - Why? Another full sleep cycle lasts ~1.5 hours which could be "too late" for the user if previous sleep cycle ends right before user-specified time
 - Prioritizing waking up right after sleep cycle has ended over time spent asleep
 - Algorithm:
 - Continuous live data acquisition until REM is detected
 - Check if currently near the alarm time and predict whether next sleep cycle will fit in time range
 - If near alarm time, wake the user once REM is over
 - Otherwise, continue data acquisition
 - Test Mode:
 - Checks data acquisition over Bluetooth between device and application – serves as debugging tool

Sleep Classifier Design


- Feature vectors consist of subset:
 - Full-band spectral entropy
 - Multi-band spectral entropy
 - Statistical measures of raw data: mean, variance, kurtosis, skew
- Considered approaches: SVM, LDA, simple threshold
- Training on 98 nights of sleeping data
 - Observation: Training on a users' individual data yields higher accuracy.

Sleep Classifier Design, continued


- The progress on this part of the project has been substantial already
- Room for improvement:
 - Testing performance against various feature combinations and hyperparameter (i.e., STFT window size) tunings.


 - Pursue more advanced feature calculations, such as Refined Composite Multiscale Dispersion Entropy (RCMDE)

Firmware Design

- Low-power design: The MCU on the wearable device will be in deep sleep for most of the night.
- Bare-metal design favored over RTOS because most CPU activity will be driven by interrupts from the AFE.



Firmware Design, continued

- When the device wakes up, it writes a BLE characteristic once a second.
- Attributes can have a maximum size of 512 bytes.¹
- 125 Hz sampling rate * 4 bytes / sample = 500 bytes / second.

¹ Source: Bluetooth Core Specification v5.3 Part F 3.2.9

Current Status

- Prototype: Printing second design (PLA + Resin)
- Hardware: Assembling PCB, tested serial communication with EOG IC
- Application: GUI still in progress can input sleep alarm time but still need to implement overnight alarm logic. Also need to implement Bluetooth data acquisition.
- Classifier: >70% accuracy on overall data set using simple threshold. Will take more advanced approach to improve further
- Firmware: Design is complete, implementation has been delayed by shipping delays and is just beginning (high-priority).

Pivoting into the weekly report...

Last Week's Action Items

Main Progress

- (Kai) 3D printing second design
- (Andrew and Syed) S11 Mobile Application Integrate algorithm and sleeping data with user interface
- (Syed) Continue working on GUI
- (Ananth) Read Bluetooth data on GUI
- (Nabid) debugging SPI communication and finish PCB assembly

Completed

- (Kai) Finish the 2nd Iteration CAD model
- (Andrew) S7.5 Make the classification model loadable, not created every time the application is launched
- (All) work on presentation/document for next week

Project Plan & Schedule

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12	Week 13	Week 14	Week 15	Week 16
Task	w/e 1/15	w/e 1/22	w/e 1/29	w/e 2/5	w/e 2/12	w/e 2/19	w/e 2/26	w/e 3/5	w/e 3/12	w/e 3/19	w/e 3/26	w/e 4/2	w/e 4/9	w/e 4/16	w/e 4/23	w/e 4/30
Team Formation																
Project Bidding																
Problem Statement																
Project Summary																
Project Proposal																
Project Research																
System Decomposition																
Part Selection/BOM																
Electrical Design**																
Firmware Design**																
Software Design**																
Mechanical Design**																
Electrical Integration**																
Firmware Integration**																
Software Integration**																
Mechanical Integration**																
Redesign																
Electrical Test**																
Firmware Test**																
Software Test**																
Mechanical Test**																
Full System Integration**																
Full System Testing**																
Data Collection									4							
Data Analysis																
Poster Design																
Final Report																
Ехро																

Current Status

- Website server up and running and can be edited! Check it out here: <u>https://eceseniordesign2022spring.ece.gatech.edu/sd22p12/</u>
- Printing issues with second in Invention Studio queueing print in IDC
- Busy week due to exams and projects/labs being due planning on catching up a bit over Spring Break

Tasks for upcoming week

- (Kai) 3D printing second design
- (Andrew and Syed) S11 Mobile Application Integrate algorithm and sleeping data with user interface
- (Syed) Continue working on GUI
- (Ananth) Read Bluetooth data on GUI
- (Syed and Ananth) Integrate functional alarm algorithm in software
- (Syed and Ananth) Use matplotlib to acquire live data waveform
- (Nabid) debugging SPI communication and start PCB assembly
- (Andrew and Nabid) F2 Read EOG data over SPI and buffer it