

Introduction:

- Uses a microphone that detects the location of sounds.
- Two main steps:
- Time difference estimation
- Triangulation
- **Biggest challenge:**
- **Obtaining sound location** information through multilateration.

Figure 1: Original Matrix

Objective:

Create a software that can capture incoming sounds and the position of the sound will be reflected on the GUI.

Georgia Institute Acoustic Source Localization (E)

- Circular 8-microphone array
 - is used to detect sounds.
 - LED lights on the array show the direction that the sound originated from.
 - Algorithm uses four sets of microphone distance pairs to triangulate the source.
 - Algorithm is run through a Raspberry Pi, which also feeds data back to the GUI.

Tiffany Ho Ajeetpal Dhillon Harry Nguyen **Daniel Scarborough** Sidong Guo **Andrew Dulaney**

Figure 3: Matrix with **GUI on Monitor**

- (2)
- (3)
- (4)