# Acoustic Source Localization

By: Tiffany Ho, Ajeetpal Dhillon, Harry Nguyen, Andrew Dulaney, Daniel Scarborough, Sidong Guo



#### Introduction

- Objective
  - To identify the location of a sound source in a given area.
- Motivation
  - We would like to make an alternated detection method that offer an alternative approach to video detection.
- Background
  - Different Methods
    - Time of arrival
    - Time difference of arrival
    - Receiver signal strength



#### Design Details

- MATRIX VOICE
  - Circular 8 Mic Array
- RASPBERRY PI 3



### Raspberry Pi and Matrix Setup

- Two functioning Matrix modules each with a Pi
- Pi's can be 3 or 4
  - Buster OS
  - Matrix HAL Library
- Localization.py
  - Runs recording executable via subprocess
  - Converts .raw files to .wav
  - Begins localization algorithm
- Documentation on Setup



## **Design Specification**

| Parameters          | Specifications                              |
|---------------------|---------------------------------------------|
| Audio Specification | 8-96 kHz                                    |
| Bit Depth           | Signed 16 bits                              |
| Operation Range     | 20 meters                                   |
| Cost                | Below \$200                                 |
| Angle Accuracy      | Average difference within 3 degrees         |
| Distance Accuracy   | Average difference within 30 centimeters    |
| Processing Delay    | Average processing delay within half second |

#### Software Flowchart



### Angle and Distance Calculation

- Use multi-condition if statement that compares 4 sets of microphone distance pairs to determine the sector of the source
- Calculate 4 angle estimation based on triangulation
- Apply sanity check on angle estimates and drop any error estimates, if more than 2 errors are made in 4 angles, drop this acquisition
- Apply variance filter to filter outliers, store the angle value
- Distance calculated based on RSS, store the RSS value
- Ensemble mean averaged over 5 acquisitions in short time period and output the coordinates
- Start again for next set of coordinates

### **Project Demonstration**

- Demo of working project
- Video for back-up
- Will show an overview of GUI
- Will test speech/acoustic signals
- Will show successful tracking algorithm
- GUI will show both actual and expected data



### Schedule, Tasks, & Milestones

| SENIOR DESIGN SCHEDULE     | Week | 10 | 11           | 12           | 13        | 14  | 15 | 16 |         |
|----------------------------|------|----|--------------|--------------|-----------|-----|----|----|---------|
| Task                       |      |    |              |              |           |     |    |    |         |
| Design Review Presentation |      |    |              |              |           |     |    |    | 10/11/2 |
| Update Project Summary     |      |    |              |              |           |     |    |    | 8       |
| RSS Test                   |      |    | SIDONG       | AJ+SIDONG    |           |     |    |    | 65      |
| Build GUI (2D PLANE)       |      |    | Andrew       | Andrew       |           |     |    |    |         |
| Build GUI (Display Data)   |      |    | Harry/Daniel | Harry/Daniel |           |     |    |    |         |
| Website                    |      |    | Daniel       | Daniel       |           |     |    |    |         |
| Build GUI (QoL Features)   |      |    | Tiffany      | Tiffany      |           |     |    |    |         |
| Test GUI                   |      |    |              | GUI Team     | GUI Team  |     |    |    |         |
| SINGLE SOURCE TEST         |      |    | SIDONG       |              |           |     |    |    |         |
| TRACKING                   |      |    | SIDONG       | AJ+SIDONG    | AJ+SIDONG |     |    |    |         |
| INTERFACE GUI WITH ALGO    |      |    |              | GUI Team     | GUI Team  |     |    |    |         |
| CAPSTONE DESIGN EXPO       |      |    | ALL          | ALL          | ALL       | ALL |    |    |         |
| FINAL DEMO                 |      |    | ALL          | ALL          | ALL       | ALL |    |    |         |
| FINAL REPORT               |      |    | ALL          | ALL          | ALL       | ALL |    |    |         |
| Update Project Summary     |      |    | ALL          | ALL          | ALL       | ALL |    |    |         |

## Cost Analysis

- Received the Matrix Voice at the cost of \$90
- Collectively, about 20 hours per week for labor and research
  - 10 hours for research
  - 6 hours for algorithm development
  - 4 hours for GUI research and development
- Cost of labor is about \$800 to \$1,000
  - Used a laxed cost of \$40 an hour





### Current Status

- Algorithm has been translated from MATLAB to Python
  - Algorithm can be run repeatedly from executable
  - Angle estimation has high accuracy
  - RSS model will be established.
- GUI team is focused on adding features and interfacing with Algo
  - Button functionality has been established
  - Graphing predicted vs. real source location is next project goal







## Leadership Roles

1. Tiffany Ho:

- $\circ$  Group leader
- o Documentation Coordinator

#### 2. Daniel Scarborough:

 $\circ$  Webmaster

#### 3. Ajeetpal Dhillon:

- o Documentation Coordinator
- o Hardware/Software Lead

#### 4. Harry Nguyen:

- Financial Manager
- $\circ~$  GUI Team Lead

#### 5. Sidong Guo:

o Software/Algorithms Lead

#### 6. Andrew Dulaney:

 $\circ~$  Lead for graphing options on GUI





