

Makin’ The Makeline – Pizza Locker

ECE4873 Senior Design Project

The Neatest ECE Team

Sd22p10
Dr. Xiaoli Ma

Papa John’s International

 Annie Liu Damian Huerta David Wechsler Dennis Crawford Leah Jackson

 CmpE CmpE EE CmpE EE
 aliu321 dhuertaortega3 dwechsler6 dcrawford41 ljackson74
aliu321@gatech.edu damhue039@gatech.edu davidwechsler@gatech.edu dennis.crawford@gatech.edu ljackson74@gatech.edu

Submitted

2022 May 3

The Neatest ECE Team ii

Table of Contents

Executive Summary ...3

1. Introduction ..4

1.1 Objective ..5

1.2 Motivation ...5
1.3 Background ...6

2. Project Description and Goals ..7

3. Technical Specification & Verification ... 10

4. Design Approach and Details

4.1 Design Approach... 11

4.2 Codes and Standards ... 31
4.3 Constraints, Alternatives, and Tradeoffs .. 12

5. Project Demonstration .. 31

6. Schedule, Tasks, and Milestones... 33

7. Final Project Demonstration ... 32

8. Marketing and Cost Analysis ... 35

7.1 Marketing Analysis .. 35
7.2 Cost Analysis .. 36

9. Conclusion .. 37

10. Leadership Roles .. 39

11. References ... 39

Appendices.. 40

The Neatest ECE Team iii

Executive Summary

The main objective for this project is to design a product that allows customers to efficiently

pick up warm pizza orders in less time and more conveniently than by staying in line and waiting for

an employee. Workers in Papa John’s International have stated their intentions of getting people in and

out of the store within 3 minutes. On average, it currently takes at least 6 minutes to do so. In order to

allow customers to have a faster and better experience with ordering their pizza, we proposed an

automated heated lockers that are connected to an application. A more efficient system would highly

benefit Papa John’s by allowing employees to work on other tasks besides handing orders to

customers who have already paid.

This application will allow customers to order their pizza, then retrieve a barcode that will act as a

key to opening a locker to their fresh pizza. On the employee side, the application automatically selects

and unlocks an empty locker for the worker to place the corresponding pizza order inside. Main

performance specifications include delivering a power efficient device that is user-friendly and

successfully maintains pizzas within a desired temperature range.

The total cost of designing, developing, and building the initial prototype was $910. The project

was demonstrated live at the Spring 2022 Capstone Design Expo, where over a hundred volunteers tested

the locker’s functionality. Next steps for this project include simplification of design to allow for potential

mass production of the device; size expansion of individual lockers to enable more orders of more than

three pizzas to be stored in the same locker; and addition of more lockers in the device.

The Neatest ECE Team iv

Nomenclature

API – Application programming interface

GUI – Graphical user interface

GPIO – General-purpose input/output

IO – Input/output

OOP – Object-oriented programming

PWM – Pulse width modulation

SPI – Serial peripheral interface

The Neatest ECE Team 1

Automated Pizza Locker

1. Introduction

The Neatest ECE Team has requested funding of approximately $910 to design, develop,

and build an automated pizza locker to improve customer’s experience at Papa John’s

International stores. A detailed breakdown of each design cost is also available under Marketing

and Cost Analysis.

Motivation

In February 2022, our team visited multiple Papa John's locations in Atlanta. A common

occurrence across multiple stores was the staff's desire to better optimize its pickup order system.

At one location, it was mentioned that the employees aimed to decrease customer time in the store

from the current average time of 6 minutes to less than 3 minutes – a reduction of at least 50%.

Given this scenario, our team has decided that the use of an automated order pick-up system could

vastly help Papa John's reach this goal.

Objective

In order to minimize customers' waiting times when picking up orders at Papa John's, the

Neatest ECE Team proposed the adoption of a locker device to enable instant and autonomous

collection of orders by the customer. Similarly, the creation and development of a smartphone

application to coordinate such lockers is also within the scope of this project.

The intended users of the proposed locker are customers picking up pizza orders in-store,

as well as employees placing orders in the locker. The device will contain several trays that will

keep the pizza warm, which can only be unlocked by their corresponding customers, or an

employee placing an order. Our team has created one application exclusively for the employees –

The Neatest ECE Team 2

to coordinate orders being placed in empty lockers –, and one application where the customer will

place an order, and consequently retrieve it once it has been placed in the locker. Such

applications interact with our physical locker and its circuitry to deliver an all-in-one solution for

Papa John’s International. We anticipate that our device could be placed near the entrance or

counter area of the stores to facilitate a fast and simple experience for the all intended users.

Additionally, we would like to note that it would be possible to use the locker device to store

other types of orders such as cookies, if the temperature requirements for that specific item are

met. This project, however, describes the design of a prototype that focuses primarily on pizza

orders.

The Neatest ECE Team is committed to diversity of thought, determination, and effort.

This project was closely guided by such principles. We are devoted to delivering a project that

will help both Papa John’s International as well as its customers by improving the overall pizza

pickup experience. We understand the difficulty of this task and always anticipated challenges

such as limitations on technology given our budget constraints. However, we firmly believe that

abiding by our core values will facilitate us to meet our end goals.

Background

The pizza locker device here proposed presents a solution to the problem statement

described that entails well founded knowledge of software/hardware creation and development, as

well as its integration. With that in mind, our team has split up tasks in order to fully optimize

every group member’s skills and abilities based on previous experience and existing knowledge.

However, this project require understanding of new concepts, something that could only be

achieved with continual learning. This document lists all external material used under its

References section.

The Neatest ECE Team 3

While our device has undergone through various stages of trials, its final demonstration

was conducted in the official Spring 2022 Capstone Design Expo organized by the Georgia

Institute of Technology, held on April 26th, 2022 at the McCamish Pavillion. We anticipate that

over one hundred volunteers tested our device through prototype application. More information

about the event can be found in Project Demonstration section.

This document provides an in-depth analysis of the project proposed, including customer

requirements, technical specifications, design approach, project schedule, cost analysis, and more.

2. Project Description, Customer Requirements, and Goals

The team will be designing a locker and application that enables customers to directly access

their order in a fast and efficient manner. This locker will have a scanner, where the customers will

have to scan a unique barcode that they will retrieve once they are done ordering through the

application. Once this code is scanned, the locker is opened, and the customer can retrieve their pizza.

The order will contain information such as approximately what time their pizza will be ready and

notify you when your pizza is hot and ready to be picked up in the locker.

The Neatest ECE Team 4

Figure 1. User-Side & Store-Side flow chart of locker/app functionality

Customers who are frequent pizza consumers and who enjoy a convenient way of accessing fresh

pizza will be using this product. Customer needs for this project includes a free highly assessable

application that is easy to use and straight forward. The application and locker access should be free and

tell you at what location to pick up your pizza. At a typical Papa Johns, it is ideal for customers to be in

and out within 3 minutes, however, because of many delays the process usually takes 7 to 8 mins. Our goal

for this project is to have customers in and out in less time. The targeted price for the product will be close

to $1000.

Fig

The design of the locker should allow the pizza to continually stay warm at a consistent

temperature from 140 degrees Fahrenheit to 150 degrees Fahrenheit. To ensure quality of ingredients, once

The Neatest ECE Team 5

a pizza is in a locker, the customer will be given 40 minutes to retrieve their pizza before a worker takes it

back.

Keep Satisfied
• Pizza Customers

• Corporations

Manage Closely
• Store workers

• Managers

Monitor (Minimal Effort)
• Help Desk

• Engineers

Keep informed
• Marketing

Figure 2. Stake Holders Chart

A user can expect that the locker mechanism will keep their order safe through the use of strong 9V

solenoid locks and restrict access to a user’s order to the user themselves and employees. The user can also

rely on the touch-free barcode scanning mechanism to limit the interaction with high traffic surfaces that

could rapidly spread COVID-19. Finally, our user should expect to interact with a GUI on the pizza locker

notifying the user of which locker their order is placed in along with audio cues once their barcode is

scanned and locker is unlocked.

Some of the constraints that we may have are getting hold of high-quality hardware components

such as a temperature sensor that measures the temperature of the locker accurately. Another user-

dependent constraint is that our barcode scanner must be able to read barcodes on phones with lower

brightness and varying resolutions. This requires careful attention when selecting a barcode scanner to fit

within this constraint.

Figure 3. QFD chart for Customer Importance and Engineering Specifications

The Neatest ECE Team 6

3. Technical Specifications & Verification

Figure 4. Initial Technical Specification chart

Figure 4 clearly indicates the various technical specifications that were created during the design proposal
portion of the semester. The table below, Figure 5, displays how various technical specifications changed
as we progressed in building our prototype. Since our final product is a prototype, there may be some

specifications that are not fully met.

Sub Requirement # Updated Specification Measured Specification

1.1 System must consume less than 1.5 KW Specification achieved

1.2 System must consume less than 120VAC Specification achieved

2.1 System must generate only a barcode for customer Generates barcode

2.2 System must generate only a barcode for employee Generates barcode

2.3 System must have a way to update order status Specification achieved

2.4 Customer must be able to see their order status & locker

number

Specification achieved

2.5 User application can read and display temperature data from

locker

Specification not achieved

3.1 Each locker can fit at least 3 pizzas 2 pizzas fit comfortably, 3 fit tightly

3.2 Locker doors unlock when correct QR barcode is scanned Locker door unlocks if barcode read is

valid for an order in locker

3.3 Locker doors automatically lock Locker door locks 5 seconds after being

unlocked

3.4 Maintains pizza at food-safe temperature Temperature ranges from 150F – 180F

3.5 System must be able to scan barcode Scanner beeps upon scanning

3.6 Removed Removed

4.1 Customers must be able to pick up a pizza within 5 minutes If no wait, pickup time < 45 seconds

4.2 Employees can drop off a pizza in less than a minute Drop off time < 45 seconds

5.1 System has indicators and instructions to aid customer GUI directs customer

5.2 System displays order status User application has order status

5.3 Pizza locker is Identifiable to user Vinyl stickers to indicate purpsoe

Figure 5. Updated specification chart

The Neatest ECE Team 7

4. Design Approach and Details

Our design approach can be broken up into four sub-categories: the physical lockers, micro

controller, solenoid lock control and the user application. The physical lockers will be designed with

the minimization of heat dissipation in mind to ensure a pizza that is ready for pickup can remain at an

appropriate temperature. The last piece of major hardware in this category would be temperature

sensors to periodically update the temperature data on the user-application.

 In order for us to create a modern device, we will have a need for a microcontroller sub-system

that will interface with the back end of our user application. This sub-system will oversee the locker’s

side of authentication and opening a specified locker based on a barcode, providing data to the user

application about pizza temperature, and the physical locking/unlocking of each locker. The

microcontroller we chose to go with is the Raspberry Pi 4 8GB version. For the application aspect of

this project, we need an application that is account based, which can be used from either a customer

standpoint or employee standpoint. An employee needs to be able to update order status and access

lockers, while a customer needs to be able to see information regarding order status, pizza temperature,

and authentication information through use of barcodes that allows them to scan at the locker and

retrieve appropriate order. For this, we decided to use React Native, a JavaScript framework for cross

platform mobile development, as the frontend for the applications, and Amazon Web Services for the

backend, utilizing API Gateway for the interfacing between the employee, user, and locker, and

DynamoDB, a NoSQL database service for holding the user information, employee information, and

current order information.

The solenoid control system consists of a one-channel relay module and a solenoid lock, which

is a computer controllable lock, for each tray in the locker. The current protype contains three trays,

The Neatest ECE Team 8

however, the possibility of developing larger-sized lockers is investigated in later sections of this

document.

The physical locker subsystem design approach was to adapt a preexisting, three-tiered pizza

warmer into a pizza locker. The benefit to using a preexisting pizza warmer rather than building it from

the ground up is that we were able to focus more on the sensor system and less on the heating elements

and mechanics (as we are a team of electrical and computer engineers). From the pizza warmer, many

adaptations still had to be made.

4.1 Design Concept Ideation, Constraints, Alternatives, and Tradeoffs

This section will look at the functions the design needs to fulfill and our solutions to each. Below is a

list of fundamental functions that the design must fulfill according to our current specifications. They

will be broken up into our four main sub-categories listed above.

1. Physical Locker

a. The physical locker must maintain the pizza temperature between 150 – 200 Fahrenheit.

This temperature is subject to change based on further testing of ideal pizza temperature

within a cardboard box.

b. Each locker must have some sort of ventilation to ensure appropriate moisture is

maintained so that the food does not dry up or become soggy. Further specification on

this will be collected via experiments.

c. Each locker must be able to fit a reasonable order size of 2-5 pizzas or have varying

sizes for different sized orders. This size can be obtained by viewing data of the average

pizza order as well as the dimension of pizza boxes, breadstick boxes, and dessert

containers.

The Neatest ECE Team 9

d. There should be no access available to an individual locker unless you are the end

consumer or an employee placing the order into the locker.

e. The Physical locker must be able to be powered by a regular 120V 15A outlet.

2. Micro-controller

a. Our Raspberry Pi must be able to execute code in a threaded manner to fulfil the GUI

and functional requirements within our system.

i. This is accomplished using Python as our programming language since it allows

for easy Object-Oriented programming that is incredibly helpful for containment

and partitioning of our code.

b. Our micro controller must be able to interface with some user interface to provide UI

and make order pickup as simple as possible.

i. Various libraries were considered for the UI interface such as Kivy, PyQT, and

Tkinter [12]

ii. These libraries follow a trend of trade-offs that with increasing complexity in the

programmability, you gain many features. In the end, our GUI did not require

many advanced features, so PyQT5 was utilized.

iii. In addition, Tkinter has since been deprecated. The development of the code had

started with Tkinter but limited documentation forced the shift to PyQT5.

iv. Finally, a huge decision was needed to be made on how to structure the GUI

code. Many systems using microcontrollers structure their code in a single

executing thread and periodically update the GUI based on events that occur.

This structure is very similar to a state-machine and can be very easy to

understand and program. However, in this scenario, it could lead to large

delays/unresponsive GUI due to the nature of the external inputs (barcode

scanner, temp sensor reading, network API calls). The trade-off is similar as

The Neatest ECE Team 10

before, if we structure our code in a multi-threaded fashion, we add complexity

in exchange for a far more responsive GUI and the ability to have concurrency.

Ultimately, the gained performance is too great to overlook.

c. The micro controller must be able to communicate via the web to our user-application

back end to send/receive data.

i. There are various Raspberry Pi models that allow for both wired and wireless

internet connection, but current chip shortages play a great role in the stock of

both. In this scenario, we didn’t have much of an option and had to use a wired

version provided to us by the ECE parts shop. However, for our design

exposition, we did not have access to ethernet connection so had to purchase a

Wi-Fi dongle.

d. The micro controller must be able to interface with hardware such as a temperature

sensor, locking mechanism (solenoid), potential infrared lighting system, and barcode

reader. The main reasoning behind using a barcode for authentication is to have a

unique barcode per transaction. Furthermore, in the times of COVID-19, we can use

barcode readers to have contact-less transactions that could not be possible with a PIN

code.

i. The biggest constraint affecting the decision of which external hardware/sensors

to use is that we are limited by the functionality and number of GPIO pins on the

Raspberry PI. Therefore, we can only use sensors that function with the

interfaces provided by the Raspberry PI. Such interfaces include serial

communication, PWM pins, digital IO pins, analog IO pins, and an SPI

interface. We would’ve loved to create a prototype with many more lockers

than 3, but this would require allotting further pins and utilizing the limited

power supplied by the Pi’s 5V GPIO pin.

The Neatest ECE Team 11

ii. Another trade-off we made was with determining which barcode scanner to

utilize. A potential option was to use a Bluetooth Barcode scanner shown in a

demo online [10]. This implementation would require the use of a python library

named evdev to handle events in a Linux environment such as the Raspbian OS

of our microcontroller. While the wireless scanner could make the physical

design of our locker simpler, it would be a bit over-kill on the microcontroller

side of things. An alternative is a simpler USB wired scanner that can be treated

as a file in python.

3. Solenoid Control

a. The solenoid control system must maintain the pizza locker doors locked in its off state

to prevent overheating of the solenoids, as well as to optimize device energy efficiency.

b. The corresponding relay should be actuated upon correct barcode being scanned by

scanner, whether on employee’s or customer’s side.

c. The solenoids should promptly unlock the locker door corresponding to the order

scanned when its relay is actuated.

4. User application

a. The application must be able to read and display data from the actual locker unit to the

end user (information from microcontroller), such as temperature, status of order, locker

number to retrieve order from.

i. The user application and employee applications have API calls using Amazon

Web Services API Gateway to retrieve information stored in a database about

their current order or list of current orders at their location in the case of the

employee, and the Raspberry Pi updates order status in the database once the

employee puts it in, periodically updates with temperature updates, and removes

The Neatest ECE Team 12

the order from the database when the customer picks it up. One tradeoff here

was that the employee application was modeled as a mobile application, which

in an actual use case, may not be feasible, and therefore would most likely need

to be integrated into the existing order system in store.

b. The application must be able to be used from a customer perspective and employee

perspective to store/retrieve pizza in lockers.

i. The application successfully interfaced with the locker to place and pickup

orders, but one tradeoff due to time constraints had to do with security concerns.

The application did not have a serious authentication system for user or

employee accounts, instead tying the input username or employee id to the entry

in the database without verifying credentials, but this format was fine for

demonstration and proof of concept. In future iterations, Amazon Cognito and

Amazon Secrets Manager could be used for authentication and providing login

tokens that could be used from an employee or user perspective to verify

credentials.

Within each of these design approaches there were various trade-offs to consider which will be

discussed below.

1. Selecting to incorporate some sort of ventilation system does complicate the design of the code

running on the micro-controller but adds more control to the quality of each consumable. In

addition, further power will be consumed that needs to be considered. However, as the

development of our project progressed, we deemed that the amount of time a user would have

an order in a locker would be rather small and deem implementing a ventilation system as

unnecessary. Some of our reasoning behind this is that a user is notified when their order is

placed in a locker along with the already existing order estimation time. This means, ideally, a

The Neatest ECE Team 13

user’s order would not persist in a locker for much longer than 10 minutes. On top of that, we

are restricted by our budget and use of a single Raspberry Pi.

2. The design of different size lockers poses an issue of potentially underutilizing space that could

be used for a larger number of small orders. In our final iteration of our design, we will have to

consider the dynamics of the store. If the pizza locker will be a separate entity, the pizza locker

will fully utilize space by remaining the same width, but having more lockers vertically to

about 5 feet, which is roughly shoulder height. The current design has the heating element

above the top locker, serving as the heating element for all three tiers. If this is adapted to have

maybe nine or so tiers, two more heating elements will have to be added. This design would be

efficient, because while it scales the number of sensors and heating elements needed, it can still

operate with one microcontroller, one barcode scanner, and one touch screen.

3. One very simple trade off to consider is the authentication method to use to access one’s order.

Utilizing a pin is a very viable option with simplicity but could hinder the user experience.

There are simpler options that have adequate security for our design, such as using barcodes to

unlock the lockers. Although this will add some complexity to the user application and micro-

controller software, it improves the user experience with added ease and less time used

inputting a pin. In addition, transferring a barcode from one phone to another is very simple and

can have more uniqueness compared to say a 4-digit code. Once again, we refrain from more

complex authentication methods due to the relatively low value of pizza.

4. The final big trade-off we faced was the selection of a micro-controller. There are infinite

possibilities such as using an ARM mbed. Although there are various libraries housed on their

online compiler, this microcontroller would limit our compute power that we wish to have. In

addition, there would be limited screen options available to achieve our desired user interface.

There are multiple other microcontrollers that have tradeoffs between price, computing power,

IO ports, etc. We chose to use a Raspberry Pie since it has adequate computing power, display

The Neatest ECE Team 14

functionality, various GPIO ports with a reasonable price increase. Furthermore, another trade

off to consider is the programming languages supported by these micro controllers. The ARM

mbed supports C style programming which can run very efficiently but lacks some abstractions

and high-level libraries that would make programming for our design a lot easier. On the

contrary, the Raspberry Pi can run multiple programming languages such as python which has

high level libraries with a wider range of displays. Although python programming can be

orders of magnitudes slower, it will not make much of a difference in our scenario and is a

worthwhile trade-off. [11]

Similarly, there are other factors that can contribute to any design such as economic, cultural,

sustainability, and environmental factors. The table below will look at some of the factors that could

affect our design.

Factor Affect

Sustainability Ensuring that we create a sustainable design is imperative to the ethical standards
of engineering. This factor can be echoed in selecting sustainable materials that
can ensure longevity of our design. A great example of this is selecting a metal

chassis for our pizza lockers. This can easily result in a more sustainable design
without producing excess weight. Furthermore, creating a design that is modular

is very important. This can ease the maintenance of our design so that smaller
components can be very easily replaced. We also chose to go with electronic
components that are actively manufactured to ensure replacements are easy to

obtain.

Economic Since our design is targeted at the pizza market, we would like the

implementation of our design to not have economic effects on the price of the
pizzas. Our design should only enhance the user experience and hopefully
increase traffic. We would like to eliminate hesitation of ordering due to fear of

time spent picking up a pizza or online ordering process. Therefore, we wish to
have our budget reflect that and a sustainable design also ensures we have little

to no impact on the economics of pizza making.

Environmental As explained in the sustainability portion, we chose parts that would result in
ease of maintenance and try to minimize the environmental footprint by being

able to reuse as much of our design if a single component breaks.
Figure 6. Global impacts of project

The Neatest ECE Team 15

4.2 Engineering Analyses and Experiment

This section will cover the topics discussed in the Proposal and how each was resolved or implemented

with notes on what was learned during the process. Once implementation details have been established,

we will discuss the various tests used to ensure proper functionality. This will be broken down in the

same sub-system sections throughout the document.

Locker

1. Locker doors and wiring

a. The single door needed to be replaced with three doors, one per tier of the locker. Then,

the sensors were attached to the doors. Wiring was routed across the door and up the

side of the locker to the microcontroller subsystem.

2. Temperature management

a. Insulation was added between the top of the pizza warmer and below the

microcontroller subsystem to avoid overheating the Raspberry Pi.

3. Integrating the other subsystems

a. The touch screen was adhered to the top of the locker using L brackets and JB Weld, a

two-part epoxy adhesive specifically for metal. The Raspberry Pi was attached to the touch

screen

4. Aesthetic features

The Neatest ECE Team 16

a. This included a wire cover painted silver on the side of the pizza locker to cover the

wires, vinyl stickers cut using the Silhouette Cameo saying “Pizza 1, 2, and 3” stuck on

the respective locker, red duct tape along the edges of the locker doors that smoothed

rough edges and matched the vinyl stickers, an electrical box to hold the solenoid

control system, and a box that rested on top of the touch screen and barcode scanner to

cover wires from the power source and barcode scanner.

Microcontroller

1. Multi-threaded approach

a. Perhaps the biggest factor that influenced the overall structure of the code executing on

the Raspberry Pi code is whether we create a thread for the GUI itself or run it all as a

single process. Upon beginning to code test functions to test things like the temperature

sensor, barcode scanner, and solenoid locks, we came to the realization that we lose

performance utilizing a single process. For instance, our main function oversees sending

temperature information to the user application back-end every 5 minutes. If we were to

couple this with the GUI, then sending the data would be on the critical path of updating

our GUI and would have negative affects on the user experience. Therefore, the decision

was made to create an independent thread to deal with the GUI and display messaged

based on user/employee actions.

b. Directly after the main thread has initialized all hardware being used, it launches a GUI

thread that is represented through an OOP approach with function calls to facilitate the

GUI behavior as shown below.

i. UiButtons

The Neatest ECE Team 17

1. In charge of setting up start button to start looking for user/employee

barcodes

2. Sets up textbox to notify user/employee of instructions

ii. Start_app

1. Starts process of waiting for actions with a call to scan

iii. Scan

1. Scans barcode, determines if it is a user barcode or employee barcode

a. Distinction is made by parsing the string that is read by barcode

scanner. Employee barcode follows following format:

“[storeID]$orderID” whereas the user barcode string will just be

the orderID

2. If user barcode read, look up order_ID to locker number mapping and

unlocks locker if such a mapping exists. Once unlocked, wait 5 seconds

before locking and make API call to remove entry from database

3. If employee barcode read, look for available locker, unlock locker, lock

locker, make API call to notify user with order_ID that their order is

ready, and update data structures to indicate that locker is no longer free

4. Recursively calls scan operation again to prepare for next action

The Neatest ECE Team 18

c.

Figure 7 displays the overall structure of the code and the diverging path of the two

threads as well as function calls and interactions with external hardware. Note that during

the execution of barcode read operations, the GUI is unresponsive which is acceptable

since it just displays a message telling the user to scan a barcode. Once any operation that

changes the GUI is performed, we make a call to the processEvents() function provided

by PyQT5 to update the GUI.

 Figure 7. Hierarchical view of code executing on Raspberry Pi.

d. The testing done for this portion of the code development followed a four-step

process discussed below:

i. Initial tests ran code that verified that a secondary thread was executing and that

the main thread did not finish execution until the GUI thread terminated. This

was tested using the .join() method from the Threading library.

The Neatest ECE Team 19

ii. The second phase of testing involved adding the read_barcode functionality to

the GUI thread and ensuring that the ascii string the barcode was converted to

was correct. This testing phase involved creating arbitrary barcodes using a

barcode generator[3]. This was a critical verification role to ensure that a

Raspberry PI scanning an OrderID would interpret correct information to use

when communicating with the backend of the user app.

iii. Our next phase utilized the starting point of the pervious phase but added calls to

unlock_locker(locker) to test that reading a given OrderID associated with a

locker would result in correct solenoid behavior and ultimately unlock the

locker. Since our system was not fully operational at this point in time,

simulating this involved hardcoding an orderID to locker mapping in our data

structures.

iv. Finally, we began testing the recursive nature of our scan by iteratively

executing the pervious phase using recursion as is needed to process multiple

user order pickups. This could’ve been implemented using an infinite while

loop, but it seemed intuitive to use recursion. Furthermore, this testing phase

verified that the GUI reset to its default state at the end of each interaction with

the user. Thankfully, all testing phases were successful.

2. Barcode Scanner Solution

a. As stated earlier, from the point of view of the python code, the barcode scanner is

nothing more than a file named ‘/dev/hidraw0’ which is opened to be read in binary

format. Appendix A will have the python code for the entire project present. As seen in

the appendix, every iteration within the read_barcode() function loops infinitely until a

The Neatest ECE Team 20

non-zero byte is read from the file. This is done utilizing a read() operation of 8 bits and

comparing the value to 0 to ensure we only read valid barcodes. Once we have obtained a

non-zero value, the value is used to index into two dictionaries that hold decimal value to

ASCII char mappings to convert the data to a string. The function continuously adds one

character at a time to a buffer until we read a carriage return character indicating the end

of the barcode. Finally, the string is printed for debugging purposes.

b. The main issue faced during this portion of code development is varying characters

allowed on different barcode generation platforms. For our use-case, we only required

alphabetical characters, numerical characters, and the “$” character as a delimiter. This is

reflected in our code strictly prohibiting byte values that do not fit within the range of the

characters mentioned.

c. The testing of our barcode.py module was done in two parts. The first was to verify that

our barcode code would be able to successfully read barcode strings that corresponded to

the format for a user and employee. More specifically an employee would have a barcode

string “atlanta2$OrderID”. Once this was verified, we implemented the function within

the scan() GUI operation and were able to successfully perform appropriate functions

(locking/unlocking, API calls, etc) based on if the barcode was for a user or employee.

This led to the second phase which was focused on testing the functionality of the barcode

scanner under various phone brightness levels. As you can see from Figure 8, there is a

positive correlation of higher brightness with successful barcode reads. Given this, we

advise users to use our system with high brightness levels (>80%).

The Neatest ECE Team 21

d. Implementing the barcode functionality taught us a great deal about the abstractions that

an OS and programming language like python make to interface with rather complex

hardware such as a barcode scanner. Furthermore, it gave us real insight into catering

your design for your specific use case and not for scenarios that will not be encountered.

It was also critical to consider factors outside of the barcode scanner itself such as phone

brightness to ensure correct functionality in very real-world scenarios.

Figure 8. Table showing positive correlation of brightness level with successful reads out of 10.

3. API calls

0

2

4

6

8

10

12

20 40 60 80 100

Su
cc

es
sf

u
l R

ea
d

s
o

u
t

o
f

1
0

Brightness level (%)

Successful Reads vs Brightness Level

The Neatest ECE Team 22

a. In order for our system to update the user when their order has been placed within a

locker and periodically updating them on temperature, we had to implement API function

calls to the back-end of the user application. In python, this translates to using a library

named requests which is a versatile framework to make API calls and allow for

displaying response messages, send data, etc. [5]. Originally, we believed the best way to

implement communication from the Raspberry Pi to the user application was using four

API calls. The four would oversee notifying the user on their order status, updating

temperature data, converting a barcode to an orderID, and deleting an order from the data

base. However, some thinking led to the conclusion that encoding the orderID in the

barcode would get rid of one API call and therefore reduce budget since each API call

costs money. Similarly, when creating the API function call to update temperature data

for the user application, a realization was made that we could also pass the locker number

for a given order. This means that when the back-end receives this data and sees that a

specific order ID does not have a locker associated to it within the database, it can now

notify the user that their order has been placed inside a locker. We can guarantee this

since our scan() operation sends the initial temperature update only after the pizza has

been placed into the locker.

b. As a result, we noticed the need for only two API calls: one to update temperature data

while notifying a user of their order and one to delete an order from the database once it

has been retrieved. Limiting the number of API calls greatly reduces the code complexity

on the back-end front, increases performance by reducing network traffic on the

microcontroller, and ultimately saves money.

The Neatest ECE Team 23

c. The implementation of API calls emphasized the important lesson of the drawbacks of

over-engineering a solution. Although the four API functions make sense intuitively and

promote clear semantics, they were not fit for our use-case. This stressed the importance

of considering factors beyond technical aspects such as budget. Even though each API

call costs a minute amount, our system is intended to be used during incredibly high

traffic times and the decrease in API calls can greatly reduce the cost of maintaining our

system in the long-term. Finally, there is great benefit to thinking critically about your

solution idea before implementation. Fleshing out how we wanted our system to function

really highlighted the lack of need for all four API functions and our ability to adapt

accordingly lead to a far better implementation of the API portion of the microcontroller

code. All API related code can be found in Appendix B in apy.py.

d. The testing portion for the API calls happened in two phases starting with just calling

each API call with dummy data. In order for this the API to respond accordingly, we had

to manually populate entries in the database for random orderIDs and update temperature

data for this order as well as remove the order. The next step was to utilize the two API

calls within our scan() operation depending on if we have read a user or employee

barcode. Testing that the correct information was sent and displayed on the user

application was critical to ensuring correctness in our API functions. After testing in both

phases, the user was able to receive a notification when their order was placed in a locker,

the temperature of their order, and the locker number. Similarly, once the user picks up

the order our delete API call successfully deleted entries in the data base to reduce storage

overhead.

The Neatest ECE Team 24

e. In addition to API calls interfacing with the Raspberry PI, there were 3 API calls designed

for interfacing with the user and employee applications. One of these calls was from the

customer standpoint, to place an order, where the inputs were the username, the order

info, and store location, which was then submitted to the database through the api call.

After the order was placed, there was a second call to fetch information for this order

periodically to check for updates, where once the order was complete, the application

could display a barcode, locker number, ready status, and temperature to the user, based

on information submitted by the Pi to the database. The final API call comes from the

employee perspective, periodically scanning the database for new orders matching the

employee location and updating the employee application with the list of current orders,

where when tapped on, the employee could view the order as well as the barcode to use

for placing the order in the locker.

Solenoid Control

Regarding the electrical circuitry of our solenoid control system, perhaps the biggest decision to be

made was the component selection. More specifically, the components to be used to interact with the

Raspberry Pi and control the solenoids. Relays deliver fairly simple and low-power electric switches

that act in a fast way to convert small electrical signals into larger currents, therefore presenting a

reliable solution to our requirements.

User application

The Neatest ECE Team 25

The User application first takes you to a screen where you are asked to create a username. Once you

create a username, you are shown an order screen where you can select what you would like to order,

as well as be asked to choose a location. Once you verify your order, you are given a barcode that

indicates that your order is ready.

 Figure 9. Flow of user application from login to view order status

Employee Application

The employee application first expects an employee id to be input for login purposes, which is tied to a

store location through the employee database, where it then transitions to showing a list of active

orders at the employee’s location, and when the employee taps on an order, being able to view the

order information and barcode used to place the order in the locker.

The Neatest ECE Team 26

Figure 10. Flow of employee application from login to view an order status in list

4.3 Codes and Standards

 Standard Body Description Impact

NFPA Standards relating to
heat producing appliances [8]

 Heating apparatus/
 power supply needs

 to follow the fire safety
 guidelines.

IEEE Standards relating to
electronics usage [7] and network
traffic usage [6]

 Need to follow rules

 regarding network traffic for

 application design and use of

 sensors in our product.

OSHA Standards relating to workplace

 safety/health [1]

 Need to make sure our locker

 design does not break any
 workplace safety requirements

 based on footprint or heating

 safety.

FDA Standards relating to proper storage

and handling of food

 Need to make sure our locker is

 up to code relating to safety of
 food storage.

5. Project Demonstration

The Neatest ECE Team 27

To demonstrate that our project was working we presented our project to Dr. Ma, our Advisor, on

April 20th. During the demonstration we showed that the pizza locker was able to open using a barcode

that we generated with a specific order ID and lock on both the user and employee side. We ordered all

the different sized pizzas that were available, as well as appetizer and dessert to make sure that all the

order sizes were able to fit into the locker. The locker was able to successfully warm the locker at a

specific temperature and keep all the ordered items warm.

List of items that were tested:

• Barcode scanner was able to take the scanned barcode and process it to open the solenoid lock.

• Made sure that the raspberry pi code was working with the hardware components.

• Made sure that the solenoid locks were in place

• Made sure that the temperature sensor was in place.

Some of the specification parameters that we were unable to meet were getting the temperature sensor

to display an accurate reading of the temperature of the locker and display it. However, we believe that

the locker will enable customers to pick up their pizza in less than 45 seconds.

To test that the solenoid locks were working, we made sure that we were able to turn them on using the

raspberry, Pi. Then we made sure that the barcode scanner was able to take in the specific barcode to

unlock the solenoid lock. For the UI component we made sure that the user data was being sent

through to the API call, which includes username, order ID, order list and order location.

Video of Project Demonstration:

https://drive.google.com/file/d/1Vm-YJi-cu71RZeS5AlVfTPmoqzvXmB3m/view?usp=sharing

The Neatest ECE Team 28

6. Schedule, Tasks, and Milestones:

Figure 11. Final Gantt Chart. Higher resolution pdf inside of Final Documents folder and on website under Gantt Chart link

Figure 12. Final Pert Chart. Higher resolution image inside of Final Documents folder

7. Final Project Demonstration

For our final project demonstration, we were able to demonstrate our finished product at the expo.

Attendees were able to volunteer to test the product and in return get a free slice of pizza. At the expo,

we asked the attendees to make an order on our application and once their order was ready, they were

given a barcode on the application that allowed them to scan and receive their order.

The Neatest ECE Team 29

Figure 13. Expo attendees listen to explanations of locker’s use and functionality

Figure 14. One of our team members demonstrates the use of locker while scanning an order’s barcode

8. Marketing and Cost Analysis

The Neatest ECE Team 30

8.1 Marketing Analysis

Existing products

1. Order pickup on a shelf

a. Current competitors, like Chipotle, utilize in-store order pickup by fulfilling orders,

attaching a sticker receipt to the order, and placing the order on a shelf. Three problems

arise from this. The first is the security of the food. Anyone can grab the wrong order,

or even worse, start stealing orders, creating a loss for the company. The second is

potential contamination. While a seal is placed on the bag of the order, there’s not

much barrier to prevent the order from being opened, contaminated, and then reclosed.

Third, there is no temperature management on the order. From the time the order is

made to when the order is picked-up, it is constantly cooling.

2. Little Ceasars pizza locker

a. One similar product is Little Ceasar’s pizza locker [12]. While our product is similar

conceptually, we are making it for our sponsor, their competitor, Papa John’s. One

fundamental distinction between our product and Little Ceasar’s is Little Ceasar’s focus

is on always available, basic pizzas, whereas Papa John’s focuses on order specific

pizzas. This means that Little Ceasar’s design has to be able to focus on keeping pizzas

in there longer, whereas we have to focus more on employee interaction with the pizza

locker.

Key marketable features of our product

1. Heated lockers

a. Our pizza locker has a heating element and a temperature sensor that alerts employees

when to adjust the temperature of the oven. While pickup time is expected to be

minimal, it allows the pizzas to be at an optimal temperature upon when the customer

picks it up.

2. Security

a. Individual pizza lockers with computer-controllable locks prevent other people from

grabbing the wrong order, stealing orders, and contaminating food. This will reduce

customer frustration of their order being missing and instill a peace of mind that their

order is noncontaminated.

The Neatest ECE Team 31

3. Easy employee interface

a. Since Papa John’s focus is on order-specific pizzas, our system for the employees is just

as easy to use as the customer interface. Once implemented in the real world, our app

will integrate with the store’s current order management system.

8.2 Cost Analysis (Budget)

Supplies:

Pizza Warmer (1) $500 [1]

Barcode Scanner (1) $50 [2]

5” Monitor (1) $70 [3]

Raspberry Pi (1) $45 [4]

Computer controllable latches (3) $100

Screws, metal, and accessories to make the doors $100

Paint $30

Sticker vinyl $15

Total $910

Design Labor Costs

Assuming that the average starting salary for an engineer is $75,000, this results in an hourly salary of
$38/hr. The average course at Georgia Tech that is three credit hours requires nine hours of weekly

time, and six of those hours are spent outside of class, which we will consider the billable hours of the
project. There are 13 weeks, out of the 16 total in a semester, that this team of five engineers will each
spend six hours on the project. This results in a total labor cost of $14,820.

38hr ⋅engineer⋅6 hrweek⋅13 weekssemester⋅5 engineers = 14,820
Total Cost

“n” indicates that this is a cost per pizza locker

Supplies $910n

Design Labor $14820

Assembly $160(n-1)

Delivery $200n

The recurring cost per pizza locker is the cost to assemble, supplies, and delivery fees. Assuming that
after the initial design plans are made it takes a moderately skilled worker, paid $20/hr., one workday

to assemble a pizza locker, this costs $160 for assembly. In the table above, it is assumed that the first
pizza locker is assembled by the engineering design team. Delivery is hard to approximate, so for the

sake of this discussion it will be approximated to $200, the cost of a day of work from someone at
$20/hr, plus gas.

Overall Cost Analysis

The Neatest ECE Team 32

The above table analyzes three price points for our product when selling different numbers of products.
The first price point, $2,000, is unreasonable because it would take selling at least 30 products a year

to make a profit. According to this analysis, it would be recommended to sell the pizza locker for
between $5-10,000 if 10 units can be sold per year.

9. Conclusion & Current Status

The current status of this project is that the physical locker prototype is functional with the

solenoid locks functioning, connected to the microcontroller system, and communicating with the app.

The software functions excellently and is ready to be implemented with the real system. However, the

physical locker is a protype, and further research and discussion with Papa John’s will have to be

conducted to determine what setup is optimal with their limited floor space. Overall, the complete

system proved that this concept has the potential to be successful, as demonstrated at the design expo,

where 50 transactions were completed.

There is not much we would do differently. We are happy with the physical design, given that

we are electrical and computer engineers and mechanical systems are outside the scope of our

specialty. On the software side, it functions as intended. The only thing we might consider adding is

the option to type in a numerical code, as opposed to only scanning a barcode, in case of system

failure, screen glare, or other difficulties.

The Neatest ECE Team 33

The lessons learned from working on the locker subsystem were taking calculated risks,

overcoming physical limitations, creative problem solving, and learning by doing. An individual team

member would take on the physical system not due to being qualified to do it, but due to the possibility

of learning how to do it. We knew we had the foundation of knowledge and access to resources that

would make this possible. She mentions that “Being responsible for the physical system was a risk, but

by calculating what the outcomes could be, I was able to decide it was one worth taking”. From this,

we’ve learned how important it is to push ourselves to take on new things and make calculated risks. In

regard to physical limitations, it’s possible to have a great plan but then to be thwarted by the physical

limitations of the system and have to adapt it. One example of this was when one of our team members

used a jig saw to widen a hole made by a drill for the lock of the solenoids. The jig saw was able to fit

for the top two holes and was successful in this. However, for the bottom one, the handle of the jigsaw

wouldn’t fit because of the bottom of the pizza oven. To overcome this, she put the blade in

backwards, which allowed her to hold the jigsaw upside down, even though this was not the intended

operation of the jigsaw.

Like the above point, we had to further our problem-solving abilities. One example of this is

wire routing. Another team member had to route nine wires from the sensors, across the oven, and up

the side of the pizza locker to where the Raspberry Pi connection would be. We wanted to do the wire

routing safely, but also not be an eyesore. The solution to this entailed using a small wire cover,

originally white but painted silver to further blend in, on the side to hide the wires, and then behind it

drilling a hole that connected to the layer between the oven and the top of it, and then the wires were

able to come out on top. In learning by doing, we’ve had to learn several new skills to complete this

project, such as using a bandsaw, jigsaw, drilling metal, and using a vinyl cutter. For the vinyl cutter,

we didn’t have anyone to teach us how to use it, and all the resources online were bare boned. They

told you what to do but left out a lot of the practical tips that make it successful. Nevertheless, we

The Neatest ECE Team 34

figured out how to do it, and learned that sometimes, we have to learn by doing rather than knowing

how to do it going into it.

Future work can continue research into sustainability and contemporary issues. This would

include how long the product would last based on the life of the pizza warmer, the solenoid locks, and

the temperature sensors. Contemporary issues include how the pizza locker affects the flow of the

restaurant and how much space it takes up. All in all, this is a functional prototype with functional

software, but further research and development is required for implementation.

10. Leadership Roles

1. Webmaster: Dennis Crawford

2. Expo Coordinator: David Wechsler

3. Sponsor Liaison: Annie Liu

4. Financial Manager: Damian Huerta

5. Team Lead: Leah Jackson

11. References

[1] “Department of Labor Logo United States department of Labor,” Regulations (Standards -

29 CFR) | Occupational Safety and Health Administration. [Online]. Available:

https://www.osha.gov/laws-regs/regulations/standardnumber. [Accessed: 03-May-2022].

[2] “ECFR :: 21 CFR Part 110 -- current good manufacturing practice in ...” [Online].

Available: https://www.ecfr.gov/current/title-21/chapter-I/subchapter-B/part-110. [Accessed:

03-May-2022].

The Neatest ECE Team 35

[3] “Free online barcode generator,” BarcodesInc. [Online]. Available:

https://www.barcodesinc.com/generator/index.php. [Accessed: 03-May-2022].

[4] “How to control a solenoid with a raspberry pi using a Relay.” [Online]. Available:

https://www.youtube.com/watch?v=BVMeVGET_Ak. [Accessed: 03-May-2022].

[5]“HTTP for humans™¶,” Requests. [Online]. Available: https://docs.python-

requests.org/en/latest/. [Accessed: 03-May-2022].

[6] “IEEE Communications Standards,” SA Main Site, 31-Jan-2022. [Online]. Available:

https://standards.ieee.org/search/?q=Communications&type=Standard. [Accessed: 03-May-

2022].

[7] “IEEE Electrical Safety Standards,” SA Main Site, 31-Jan-2022. [Online]. Available:

https://standards.ieee.org/search/?q=National+Electrical+Safety+Code+NESC&type=Standar

d. [Accessed: 03-May-2022].

[8] “List of NFPA Codes & Standards,” List of NFPA Codes and Standards. [Online].

Available: https://www.nfpa.org/Codes-and-Standards/All-Codes-and-Standards/List-of-

Codes-and-Standards. [Accessed: 03-May-2022].

[9] “Little Caesars just launched a pizza locker that lets you avoid human interaction,” Little

Caesars Just Launched A Pizza Locker That Lets You Avoid Human Interaction. [Online].

Available: https://www.foodbeast.com/news/little-caesars-pizza-portal/. [Accessed: 03-May-

2022].

The Neatest ECE Team 36

[10] Piddler, “Wireless Barcode Scanner,” piddlerintheroot, 11-Dec-2020. [Online].

Available: https://www.piddlerintheroot.com/wireless-barcode-scanner/. [Accessed: 03-May-

2022].

[11] Raspberry Pi, “Buy A raspberry pi 4 model B,” Raspberry Pi. [Online]. Available:

https://www.raspberrypi.com/products/raspberry-pi-4-model-b/. [Accessed: 03-May-2022].

[12] ResellerClub, “The 6 best python GUI frameworks for developers,” Medium, 18-Oct-

2019. [Online]. Available: https://medium.com/teamresellerclub/the-6-best-python-gui-

frameworks-for-developers-7a3f1a41ac73. [Accessed: 03-May-2022].

Appendices

Appendix A – Raspberry Pi Python Code

Main.py

from hardware import *

from locker_threads import*

#set of all lockers

lockers = {1,2,3}

def locker_temp_check():

 print("checking locker temp")

 temp = checkTemp(1)

 for locker in locker_to_order_number:

 print(locker)

 order_temp_update(locker_to_order_number[locker], temp[0], locker)

 return

def main():

The Neatest ECE Team 37

 #initialize hardware

 initialize_hardware(free_lockers)

 #launching GUI thread

 print("Launching GUI Thread")

 gui_thread = myThread(1, "GUI-Thread")

 gui_thread.start()

 #start periodically sending temp information to lockers that are open

 while 1:

 locker_temp_check() #might just use the one sensor since all lockers should be same temp

 print("sent temp info to back end")

 time.sleep(600) #sending temp every 5 minutes

 #waiting for gui thread to finish

 gui_thread.join()

if __name__ == "__main__":

 main()

Locker_threads.py

#regular imports

import time

import threading

from gui import *

from api import *

class myThread (threading.Thread):

 def __init__(self, threadID, name):

 threading.Thread.__init__(self)

 self.threadID = threadID

 self.name = name

 def run(self):

 print ("Starting " + self.name)

 gui_thread()

 print ("Exiting " + self.name)

The Neatest ECE Team 38

def gui_thread():

 print("Inside GUI thread")

 setup_initial_gui()

 return

Gui.py

#imports

from PyQt5.QtWidgets import QApplication, QMainWindow, QWidget, QPushButton, QLabel

import sys

import time

from api import order_temp_update, delete_order_number

from bacode import *

from hardware import *

class Window(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setGeometry(0, -10, 1950, 1100)

 self.setWindowTitle("Pizza Locker GUI")

 self.UiButtons()

 self.show()

 #method to setup initial buttons

 def UiButtons(self):

 self.start_btn = QPushButton("Start", self)

 self.start_btn.move(250,150)

 self.start_btn.pressed.connect(self.start_app)

 self.text_label = QLabel(self)

 self.text_label.setGeometry(220,0,300,50)

 #start application method

 def start_app(self):

 self.start_btn.deleteLater()

 self.show()

 self.scan()

 def scan(self):

 print("start scanning")

 barcode = read_barcode()

 split_barcode = barcode.split("$")

 if split_barcode[0] == store_barcode:

 #barcode read was store barcode so now read for user barcode

 print("Dealing with employee barcode")

 user_barcode = split_barcode[1]

 locker = get_free_locker()

The Neatest ECE Team 39

 if locker == -1:

 print("No locker available")

 else:

 #unlock locker

 print("going to unlock {}".format(locker))

 self.text_label.setText("Employee, place order in locker {}".format(locker))

 QApplication.processEvents()

 unlock_locker(locker)

 time.sleep(5)

 lock_locker(locker)

 #send API call now

 (temp, humidty) = checkTemp(1)

 order_number = user_barcode #might need to change this to just part of what was read

 order_temp_update(order_number, temp, locker)

 self.text_label.setText("User has been notified that their order is ready for pickup")

 QApplication.processEvents()

 #update dictionaries

 locker_to_order_number[locker] = order_number

 else :

 #read user barcode

 order_number = barcode

 print("dealing with user barcode")

 locker_number = get_locker_number(order_number)

 if (locker_number == -1):

 print("order not found")

 self.text_label.clear()

 QApplication.processEvents()

 self.scan()

 else:

 print("found order")

 #notify user where their order is placed and unlock

 self.text_label.setText("User, locker {} has been unlocked. Please close after retreiving order".format(locker_number))

 QApplication.processEvents()

 unlock_locker(locker_number)

 time.sleep(5)

 lock_locker(locker_number)

 delete_order_number(barcode)

 #update dictionaries

 locker_to_order_number.pop(locker_number)

 time.sleep(5)

 self.text_label.clear()

 QApplication.processEvents()

 self.scan()

def setup_initial_gui():

The Neatest ECE Team 40

 app = QApplication(sys.argv)

 window = Window()

 app.exec_()

Hardware.py

#imports

import time

import board

import adafruit_dht

import RPi.GPIO as GPIO

#dictionaries

locker_to_gpio = {1:16, 2:20, 3:21}

locker_status = {} #1 is available 0 is busy

free_lockers = {}

locker_to_order_number = {}

#initialize harware. Might not actually need this

def initialize_hardware(free_lockers):

 GPIO.setwarnings(False)

 GPIO.setmode(GPIO.BCM)

 GPIO.setup(16, GPIO.OUT)

 GPIO.setup(20, GPIO.OUT)

 GPIO.setup(21, GPIO.OUT)

 locker_status[1] = 1

 locker_status[2] = 1

 locker_status[3] = 1

 return

def unlock_locker(locker):

 GPIO.output(locker_to_gpio[locker], 0)

def lock_locker(locker):

 GPIO.output(locker_to_gpio[locker], 1)

def get_free_locker():

 for locker in locker_status:

 if locker_status[locker] == 1:

 locker_status[locker] = 0

 return locker

 return -1

def get_locker_number(order_number):

 for locker in locker_to_order_number:

 if locker_to_order_number[locker] == order_number:

 return locker

The Neatest ECE Team 41

 return -1

def checkTemp(locker_number):

 dhtDevice = adafruit_dht.DHT22(board.D18)

 while True:

 try:

 temperature_c = dhtDevice.temperature

 temperature_f = temperature_c * (9/5) + 32

 humidity = dhtDevice.humidity

 print("Temp: {:.1f} F / {:.1f} C Humidity: {}% ".format(temperature_f, temperature_c, humidity))

 tup = (temperature_f, humidity)

 return tup

 except RuntimeError as error:

 # Errors happen fairly often, DHT's are hard to read, just keep going

 time.sleep(2.0)

 continue

 except Exception as error:

 dhtDevice.exit()

 raise error

Barcode.py

#File in charge of reading barcode scanner and returing string might use

import sys

import json

store_barcode = "atlanta2"

def read_barcode():

 hid = {4: 'a', 5: 'b', 6: 'c', 7: 'd', 8: 'e', 9:

 'f', 10: 'g', 11: 'h', 12: 'i', 13: 'j', 14: 'k', 15: 'l', 16: 'm',

 17: 'n', 18: 'o', 19: 'p', 20: 'q', 21: 'r', 22: 's', 23:

 't', 24: 'u', 25: 'v', 26: 'w', 27: 'x', 28: 'y', 29: 'z',

 30: '1', 31: '2', 32: '3', 33: '4', 34: '5', 35: '6', 36:

 '7', 37: '8', 38: '9', 39: '0', 44: ' ', 45: '-', 46: '=',

 47: '[', 48: ']', 49: '\\', 51: ';', 52: '\'', 53: '~', 54:

 ',', 55: '.', 56: '/'}

 hid2 = {4: 'A', 5: 'B', 6: 'C', 7: 'D', 8: 'E', 9: 'F', 10: 'G', 11:

 'H', 12: 'I', 13: 'J', 14: 'K', 15: 'L', 16: 'M', 17: 'N',

 18: 'O', 19: 'P', 20: 'Q', 21: 'R', 22: 'S', 23: 'T', 24:

 'U', 25: 'V', 26: 'W', 27: 'X', 28: 'Y', 29: 'Z', 30: '!',

 31: '@', 32: '#', 33: '$', 34: '%', 35: '^', 36: '&', 37:

 '*', 38: '(', 39: ')', 44: ' ', 45: '_', 46: '+', 47: '{',

 48: '}', 49: '|', 51: ':', 52: '"', 53: '~', 54: '<', 55:

 '>', 56: '?'}

The Neatest ECE Team 42

 fp = open('/dev/hidraw0', 'rb')

 #print("opened")

 #print(fp)

 ss = ""

 shift = False

 done = False

 while not done:

 #print("looping")

 ## Get the character from the HID

 buffer = fp.read(8)

 #print(buffer)

 for c in buffer:

 #print(c)

 if ord(chr(c)) > 0 and ord(chr(c)) <= 56:

 ## 40 is carriage return which signifies we are done

 ## looking for characters

 if int(ord(chr(c))) == 40:

 done = True

 break

 ## If we are shifted then we have to use the hid2

 ## characters.

 if shift:

 ## If it is a '2' then it is the shift key

 if int(ord(chr(c))) == 2:

 shift = True

 ## if not a 2 then lookup the mapping

 else:

 ss += hid2[int(ord(chr(c)))]

 shift = False

 ## If we are not shifted then use the hid characters

 else:

 ## If it is a '2' then it is the shift key

 if int(ord(chr(c))) == 2:

 shift = True

 ## if not a 2 then lookup the mapping

 else:

 ss += hid[int(ord(chr(c)))]

 print("READ BARCODE: {}".format(ss))

 return ss

The Neatest ECE Team 43

Api.py

#file in charge of all API requests

import json

from wsgiref.util import request_uri

import requests

#Functions

api_url = "https://xsb8acpx2a.execute-api.us-east-1.amazonaws.com/dev/barcode"

base_url = "https://xsb8acpx2a.execute-api.us-east-1.amazonaws.com/prod/locker/"

#tells API that order_number has new temp. Will tell user updated temp

def order_temp_update(order_number, temp, locker_number):

 print(order_number)

 print(temp)

 print(locker_number)

 url = base_url + order_number

 print(url)

 r = requests.put(url, json = {"temperature": str(temp), "locker" : locker_number})

 print(r.status_code)

 print(r.content)

 return

#tells API to remove entry for order_number since it has been picked up

def delete_order_number(order_number):

 print("deleting order")

 url = base_url + order_number

 print

 r = requests.delete(url)

 print(r.status_code)

 print(r.content)

 return

Appendix B – API Calls Handler Python Code

pizzalocker_placeorder

The Neatest ECE Team 44

pizzalocker_customer_getorder

The Neatest ECE Team 45

pizzalocker_employee_getorders

The Neatest ECE Team 46

pizzalocker_updateorder

pizzalocker_pickup

The Neatest ECE Team 47

Appendix C – Sample AWS API Setup and Database Setup

API Gateway

The Neatest ECE Team 48

Order DynamoDB Table

Example Order Item

